Star-Shaped Polymers Kill Antibiotic Resistant Bacteria
By HospiMedica International staff writers Posted on 05 Oct 2016 |

Image: A bacteria cell before (L) and after treatment (R) with star-shaped polymers (Photo courtesy of UNIMELB).
A new study suggests that structurally nanoengineered antimicrobial peptide polymers (SNAPPs) could provide a low-cost and effective antimicrobial agent against multidrug resistant (MDR) bacteria.
Developed by researchers at the University of Melbourne (UNIMELB; Parkville, Australia), the star-shaped SNAPP is extremely effective at killing Gram-negative bacteria while being non-toxic to the body’s own cells, thanks to its unique antimicrobial activity. SNAPPs induce cell death by a multimodal mechanism that combines outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane, and induction of the apoptotic-like death pathway.
The SNAPPs exhibited sub-μM activity against all Gram-negative bacteria tested, including the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter) pathogens and other colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. In addition, the researchers did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. The study was published on September 12, 2016, in Nature Microbiology.
“It is estimated that the rise of superbugs will cause up to ten million deaths a year by 2050. In addition, there have only been one or two new antibiotics developed in the last 30 years,” concluded senior author Professor Greg Qiao, PhD, of the department of chemical and biomolecular engineering, and colleagues. “Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents, and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.”
Antimicrobial polymers are engineered to mimic peptides used by the immune systems of living things to kill bacteria. Typically, they are produced by attaching or inserting an active antimicrobial agent onto a polymer backbone via an alkyl or acetyl linker. The use of antimicrobial polymers may enhance the efficiency and selectivity of common antimicrobial agents, while decreasing associated environmental hazards since they are generally nonvolatile and chemically stable.
Related Links:
University of Melbourne
Developed by researchers at the University of Melbourne (UNIMELB; Parkville, Australia), the star-shaped SNAPP is extremely effective at killing Gram-negative bacteria while being non-toxic to the body’s own cells, thanks to its unique antimicrobial activity. SNAPPs induce cell death by a multimodal mechanism that combines outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane, and induction of the apoptotic-like death pathway.
The SNAPPs exhibited sub-μM activity against all Gram-negative bacteria tested, including the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter) pathogens and other colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. In addition, the researchers did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. The study was published on September 12, 2016, in Nature Microbiology.
“It is estimated that the rise of superbugs will cause up to ten million deaths a year by 2050. In addition, there have only been one or two new antibiotics developed in the last 30 years,” concluded senior author Professor Greg Qiao, PhD, of the department of chemical and biomolecular engineering, and colleagues. “Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents, and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.”
Antimicrobial polymers are engineered to mimic peptides used by the immune systems of living things to kill bacteria. Typically, they are produced by attaching or inserting an active antimicrobial agent onto a polymer backbone via an alkyl or acetyl linker. The use of antimicrobial polymers may enhance the efficiency and selectivity of common antimicrobial agents, while decreasing associated environmental hazards since they are generally nonvolatile and chemically stable.
Related Links:
University of Melbourne
Latest Critical Care News
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
- Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment
- Self-Healing Skin-Like Material to Find Applications in Health Monitoring, Surgery and Implants
- Highly-Sensitive Electronic Skin Allows Robots to Feel Heat, Pain and Pressure
- AI-Powered Wearable Sensor Predicts Labor Onset in Pregnant Women
Channels
Surgical Techniques
view channel
Neuroform Atlas Stent-Assisted Coiling Found Effective Even in Smaller Arteries
Aneurysms, especially when located in the brain, can be life-threatening if not treated effectively. Intracranial aneurysms, caused by the dilation of blood vessels due to weaknesses in the vessel wall,... Read more
New Surgical Technique Safely Removes Giant Nerve Tumors
Giant plexiform neurofibromas (PNF) are benign tumors commonly associated with neurofibromatosis Type 1 (NF1), a genetic disorder affecting approximately 1 in 3,000 live births. These tumors, which occur... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more