We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Star-Shaped Polymers Kill Antibiotic Resistant Bacteria

By HospiMedica International staff writers
Posted on 05 Oct 2016
Print article
Image: A bacteria cell before (L) and after treatment (R) with star-shaped polymers (Photo courtesy of UNIMELB).
Image: A bacteria cell before (L) and after treatment (R) with star-shaped polymers (Photo courtesy of UNIMELB).
A new study suggests that structurally nanoengineered antimicrobial peptide polymers (SNAPPs) could provide a low-cost and effective antimicrobial agent against multidrug resistant (MDR) bacteria.

Developed by researchers at the University of Melbourne (UNIMELB; Parkville, Australia), the star-shaped SNAPP is extremely effective at killing Gram-negative bacteria while being non-toxic to the body’s own cells, thanks to its unique antimicrobial activity. SNAPPs induce cell death by a multimodal mechanism that combines outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane, and induction of the apoptotic-like death pathway.

The SNAPPs exhibited sub-μM activity against all Gram-negative bacteria tested, including the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter) pathogens and other colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. In addition, the researchers did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. The study was published on September 12, 2016, in Nature Microbiology.

“It is estimated that the rise of superbugs will cause up to ten million deaths a year by 2050. In addition, there have only been one or two new antibiotics developed in the last 30 years,” concluded senior author Professor Greg Qiao, PhD, of the department of chemical and biomolecular engineering, and colleagues. “Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents, and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.”

Antimicrobial polymers are engineered to mimic peptides used by the immune systems of living things to kill bacteria. Typically, they are produced by attaching or inserting an active antimicrobial agent onto a polymer backbone via an alkyl or acetyl linker. The use of antimicrobial polymers may enhance the efficiency and selectivity of common antimicrobial agents, while decreasing associated environmental hazards since they are generally nonvolatile and chemically stable.

Related Links:
University of Melbourne


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Antegrade Femoral Nailing System
AUTOBAHN EVO

Print article

Channels

Surgical Techniques

view channel
Image: GI procedures can produce dangerous levels of smoke (Photo courtesy of 123RF)

Study Warns Against Dangerous Smoke Levels Produced During Endoscopic Gastrointestinal Procedures

Healthcare professionals involved in certain smoke-generating endoscopic gastrointestinal procedures, such as those using electrical current to excise polyps, may be exposed to toxin levels comparable... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more