Star-Shaped Polymers Kill Antibiotic Resistant Bacteria
By HospiMedica International staff writers Posted on 05 Oct 2016 |

Image: A bacteria cell before (L) and after treatment (R) with star-shaped polymers (Photo courtesy of UNIMELB).
A new study suggests that structurally nanoengineered antimicrobial peptide polymers (SNAPPs) could provide a low-cost and effective antimicrobial agent against multidrug resistant (MDR) bacteria.
Developed by researchers at the University of Melbourne (UNIMELB; Parkville, Australia), the star-shaped SNAPP is extremely effective at killing Gram-negative bacteria while being non-toxic to the body’s own cells, thanks to its unique antimicrobial activity. SNAPPs induce cell death by a multimodal mechanism that combines outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane, and induction of the apoptotic-like death pathway.
The SNAPPs exhibited sub-μM activity against all Gram-negative bacteria tested, including the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter) pathogens and other colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. In addition, the researchers did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. The study was published on September 12, 2016, in Nature Microbiology.
“It is estimated that the rise of superbugs will cause up to ten million deaths a year by 2050. In addition, there have only been one or two new antibiotics developed in the last 30 years,” concluded senior author Professor Greg Qiao, PhD, of the department of chemical and biomolecular engineering, and colleagues. “Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents, and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.”
Antimicrobial polymers are engineered to mimic peptides used by the immune systems of living things to kill bacteria. Typically, they are produced by attaching or inserting an active antimicrobial agent onto a polymer backbone via an alkyl or acetyl linker. The use of antimicrobial polymers may enhance the efficiency and selectivity of common antimicrobial agents, while decreasing associated environmental hazards since they are generally nonvolatile and chemically stable.
Related Links:
University of Melbourne
Developed by researchers at the University of Melbourne (UNIMELB; Parkville, Australia), the star-shaped SNAPP is extremely effective at killing Gram-negative bacteria while being non-toxic to the body’s own cells, thanks to its unique antimicrobial activity. SNAPPs induce cell death by a multimodal mechanism that combines outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane, and induction of the apoptotic-like death pathway.
The SNAPPs exhibited sub-μM activity against all Gram-negative bacteria tested, including the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter) pathogens and other colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. In addition, the researchers did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. The study was published on September 12, 2016, in Nature Microbiology.
“It is estimated that the rise of superbugs will cause up to ten million deaths a year by 2050. In addition, there have only been one or two new antibiotics developed in the last 30 years,” concluded senior author Professor Greg Qiao, PhD, of the department of chemical and biomolecular engineering, and colleagues. “Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents, and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.”
Antimicrobial polymers are engineered to mimic peptides used by the immune systems of living things to kill bacteria. Typically, they are produced by attaching or inserting an active antimicrobial agent onto a polymer backbone via an alkyl or acetyl linker. The use of antimicrobial polymers may enhance the efficiency and selectivity of common antimicrobial agents, while decreasing associated environmental hazards since they are generally nonvolatile and chemically stable.
Related Links:
University of Melbourne
Latest Critical Care News
- Discovery of Heart’s Hidden Geometry to Revolutionize ECG Interpretation
- New Approach Improves Diagnostic Accuracy for Esophageal Motility Disorders
- Wristband Sensor Provides All-In-One Monitoring for Diabetes and Cardiovascular Care
- Handheld Device Enables Imaging and Treatment of Oral Cancer in Low-Resource Settings
- New Fully Automated AI Algorithm More Effective at Predicting Heart Attack Risk
- First-In-Kind Self-Assembling Collagen Scaffold Advances Wound Care
- AI-Enhanced Echocardiography Improves Early Detection of Amyloid Buildup in Heart
- Consumer Wearables Could Predict Pediatric Surgery Complications
- Wireless Implant Delivers Chemotherapy Deep into Tumors Without Side Effects
- Skin-Like Sensor Monitors Vital Signs and Tracks Healing After Surgery
- Implantable Device Could Save Diabetes Patients from Dangerously Low Blood Sugar
- New Prostate Screening Device Could Replace Traditional Examination Method
- Adaptive Spine Board to Revolutionize ER Transport
- Mapping Communication Between Internal Organs to Enable Earlier Illness Diagnosis
- Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
Channels
Surgical Techniques
view channel
Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery
Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more