Gastric Fluids Could Help Power Ingestible Devices
|
By HospiMedica International staff writers Posted on 21 Feb 2017 |

Image: A new study suggests a novel bio-galvanic cell could power ingestible devices (Photo courtesy of BWH).
A new study suggests that electrolytes in gastric acid could provide a sufficiently potent energy source to power ingestible electronics.
Researchers at Brigham and Women’s Hospital, the Massachusetts Institute of Technology, and other institutions have developed a prototype ingestible capsule body temperature monitor that is powered by an energy-harvesting galvanic cell, based on a redox couple formed by a dissolving metallic anode that undergoes galvanic oxidation, and an inert cathode that returns electrons to the gastrointestinal (GI) fluids that form the electrolyte.
The bio-galvanic cell delivered an average power of 0.23 μW mm−2 of electrode area for an average of 6.1 days of temperature measurements in the GI tract of pigs, with measurements taken every 12 seconds, on average, and sent wirelessly to a remote device. In addition, the researchers showed that prototype devices could activate the release of fluids contained within the device using the harvested power, illustrating potential therapeutic applications for drug delivery. The study was published on February 6, 2017, in Nature Biomedical Engineering.
“Because of the GI tract's unique position in the body - adjacent to the heart, lungs, and liver - there is a growing interest in devices that can also monitor and potentially treat a variety of organ systems and conditions,” said senior author gastroenterologist and biomedical engineer C. Giovanni Traverso, MD, PhD, of the BWH division of gastroenterology. “The future of ingestible devices could look dramatically different from what we have today. Ingestible electronics have an expanding role in the evaluation of patients.”
“The potential of applying electronics or electrical signals for treatment is being explored and the potential for long-term monitoring and treatment is being realized through the development of systems with the capacity for safe, extended gastrointestinal residence,” concluded Dr. Traverso and colleagues. “Energy alternatives for GI systems are needed to enable broad applicability, especially given size and biocompatibility constraints coupled with the need for long-term power sources and low-cost systems.”
Researchers at Brigham and Women’s Hospital, the Massachusetts Institute of Technology, and other institutions have developed a prototype ingestible capsule body temperature monitor that is powered by an energy-harvesting galvanic cell, based on a redox couple formed by a dissolving metallic anode that undergoes galvanic oxidation, and an inert cathode that returns electrons to the gastrointestinal (GI) fluids that form the electrolyte.
The bio-galvanic cell delivered an average power of 0.23 μW mm−2 of electrode area for an average of 6.1 days of temperature measurements in the GI tract of pigs, with measurements taken every 12 seconds, on average, and sent wirelessly to a remote device. In addition, the researchers showed that prototype devices could activate the release of fluids contained within the device using the harvested power, illustrating potential therapeutic applications for drug delivery. The study was published on February 6, 2017, in Nature Biomedical Engineering.
“Because of the GI tract's unique position in the body - adjacent to the heart, lungs, and liver - there is a growing interest in devices that can also monitor and potentially treat a variety of organ systems and conditions,” said senior author gastroenterologist and biomedical engineer C. Giovanni Traverso, MD, PhD, of the BWH division of gastroenterology. “The future of ingestible devices could look dramatically different from what we have today. Ingestible electronics have an expanding role in the evaluation of patients.”
“The potential of applying electronics or electrical signals for treatment is being explored and the potential for long-term monitoring and treatment is being realized through the development of systems with the capacity for safe, extended gastrointestinal residence,” concluded Dr. Traverso and colleagues. “Energy alternatives for GI systems are needed to enable broad applicability, especially given size and biocompatibility constraints coupled with the need for long-term power sources and low-cost systems.”
Channels
Critical Care
view channel
CPR Guidelines Updated for Pediatric and Neonatal Emergency Care and Resuscitation
Cardiac arrest in infants and children remains a leading cause of pediatric emergencies, with more than 7,000 out-of-hospital and 20,000 in-hospital cardiac arrests occurring annually in the United States.... Read more
Ingestible Capsule Monitors Intestinal Inflammation
Acute mesenteric ischemia—a life-threatening condition caused by blocked blood flow to the intestines—remains difficult to diagnose early because its symptoms often mimic common digestive problems.... Read more
Wireless Implantable Sensor Enables Continuous Endoleak Monitoring
Endovascular aneurysm repair (EVAR) is a life-saving, minimally invasive treatment for abdominal aortic aneurysms—balloon-like bulges in the aorta that can rupture with fatal consequences.... Read more
Wearable Patch for Early Skin Cancer Detection to Reduce Unnecessary Biopsies
Skin cancer remains one of the most dangerous and common cancers worldwide, with early detection crucial for improving survival rates. Traditional diagnostic methods—visual inspections, imaging, and biopsies—can... Read moreSurgical Techniques
view channel
Robotic Assistant Delivers Ultra-Precision Injections with Rapid Setup Times
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, affecting nearly 200 million people, a figure expected to rise to 280 million by 2040. Current treatment involves doctors... Read more
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







