Common EM Fields Can Disrupt Pacemaker Function
|
By HospiMedica International staff writers Posted on 14 Mar 2017 |
Researchers at the German Social Accident Insurance Institution and RWTH Aachen University conducted a study that subjected 119 individuals with pacemakers to stepwise increases in EM exposure in order to test pacemaker function. Exposure was tested under several worst-case scenario conditions: whole-body exposure, maximal inspiration, and sustained pacing. Interference was defined as a sensing failure (both over- or under-sensing) by the pacemaker.
The researchers found that the interferences occurred mainly with frequencies of 50 and 60 Hz, which encompass the worldwide power grid standard frequencies. Examples of such EM sources are power lines, household appliances, power tools, entertainment electronics, and many other different kinds of electrical equipment. The results revealed that among the participants with bipolar sensing leads, 71.9% had sensing failures at maximum sensitivity, and 36% had sensing failures at nominal sensitivity settings. All five patients with unipolar lead pacemakers showed signs of interference.
In addition, ventricular EM interference occurred in 32.4% and 3.6% of devices at maximum and nominal sensitivity; atrial EM interference was more likely in 72.9% and 42.7% of the devices, respectively. Based on the study results, emissions from an electric drill, for example, would interfere with 61% and 16% of pacemakers at maximal and nominal sensitivity, respectively. U.S. current limits for daily exposure to EM radiation would have interfered with 34% and 4.4% of pacemakers at maximal and nominal sensitivity, respectively. The study was published on February 28, 2017, in Circulation.
“To protect patients from electromagnetic interference, adjusting pacemaker settings to a lower sensitivity, bipolar sensing, and keeping at a distance from electromagnetic field sources are effective measures; the field strength decreases at least by half if the distance is doubled,” concluded lead author Andreas Napp, MD, and colleagues. “Among the electromagnetic interference effects, ventricular over-sensing is the clinically most relevant problem, which may cause asystole in the case of pacing inhibition with symptoms such as palpitations, dizziness, or syncope in pacemaker-dependent patients.”
EM fields consists of emitted waves with synchronized oscillations of electric and magnetic fields, which are perpendicular to each other and perpendicular to the direction of energy and wave propagation, thus forming a transverse wave. The EM spectrum includes--in order of increasing frequency and decreasing wavelength--radio waves, microwaves, infrared (IR) radiation, visible light, ultraviolet (UV) radiation, X-rays, and gamma rays.
The researchers found that the interferences occurred mainly with frequencies of 50 and 60 Hz, which encompass the worldwide power grid standard frequencies. Examples of such EM sources are power lines, household appliances, power tools, entertainment electronics, and many other different kinds of electrical equipment. The results revealed that among the participants with bipolar sensing leads, 71.9% had sensing failures at maximum sensitivity, and 36% had sensing failures at nominal sensitivity settings. All five patients with unipolar lead pacemakers showed signs of interference.
In addition, ventricular EM interference occurred in 32.4% and 3.6% of devices at maximum and nominal sensitivity; atrial EM interference was more likely in 72.9% and 42.7% of the devices, respectively. Based on the study results, emissions from an electric drill, for example, would interfere with 61% and 16% of pacemakers at maximal and nominal sensitivity, respectively. U.S. current limits for daily exposure to EM radiation would have interfered with 34% and 4.4% of pacemakers at maximal and nominal sensitivity, respectively. The study was published on February 28, 2017, in Circulation.
“To protect patients from electromagnetic interference, adjusting pacemaker settings to a lower sensitivity, bipolar sensing, and keeping at a distance from electromagnetic field sources are effective measures; the field strength decreases at least by half if the distance is doubled,” concluded lead author Andreas Napp, MD, and colleagues. “Among the electromagnetic interference effects, ventricular over-sensing is the clinically most relevant problem, which may cause asystole in the case of pacing inhibition with symptoms such as palpitations, dizziness, or syncope in pacemaker-dependent patients.”
EM fields consists of emitted waves with synchronized oscillations of electric and magnetic fields, which are perpendicular to each other and perpendicular to the direction of energy and wave propagation, thus forming a transverse wave. The EM spectrum includes--in order of increasing frequency and decreasing wavelength--radio waves, microwaves, infrared (IR) radiation, visible light, ultraviolet (UV) radiation, X-rays, and gamma rays.
Latest Critical Care News
- Nanogel Technology Almost 100% Effective in Destroying Drug-Resistant Bacteria Within Hours
- Wearable Ultrasound Sensor Delivers Noninvasive Treatment Without Surgery
- Gel-Free ECG System to Transform Heart Health Diagnosis
- Biodegradable Patch Repairs Damaged Tissue After Heart Attack
- Magnetically Guided Microrobots to Enable Targeted Drug Delivery

- Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
- Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
- 'Smart' Shirt Detects Epileptic Seizures in Real Time
- Skin Patch Measures Effectiveness of Flu/COVID Vaccines in 10 Minutes
- Complete Revascularization Reduces Risk of Death from Cardiovascular Causes
- Tiny Fish-Inspired Robots Navigate Through Body to Deliver Targeted Drug Therapy
- Coronary Artery Stenosis Could Protect Patients from Pulmonary Embolism Effects
- Sweat-Powered Sticker Turns Drinking Cup into Health Sensor
- Skin-Mounted 3D Microfluidic Device Analyzes Sweat for Real-Time Health Assessment
- New Therapeutic Brain Implants to Eliminate Need for Surgery
- Stem Cell Patch Gently Heals Damaged Hearts Without Open-Heart Surgery
Channels
Surgical Techniques
view channelNovel Endoscopy Technique Provides Access to Deep Lung Tumors
Detecting lung cancer early can save lives, but diagnosing small tumors deep in the outer regions of the lungs remains a major clinical challenge. Although CT scans frequently identify tiny suspicious... Read more
New Study Findings Could Halve Number of Stent Procedures
When a coronary artery becomes acutely blocked during a heart attack, opening it immediately is essential to prevent irreversible damage. However, many patients also have other narrowed vessels that appear... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







