Bioactive Foam Scaffold Helps Replace Lost Bone
|
By HospiMedica International staff writers Posted on 19 Apr 2017 |

Image: A novel bioactive shape memory polymer could replace missing bone (Photo courtesy of RPI).
Novel malleable bioactive foam can be used to treat craniomaxillofacial osseous gaps in the skull resulting from injury, surgery, or birth defects.
Under development by researchers at the Rensselaer Polytechnic Institute and Texas A&M University, the bioactive foam is based on a shape memory polymer (SMP) made of crosslinked poly(ε-caprolactone) (PCL) diacrylate coated in a bioactive polydopamine. When exposed to warm saline, the foam material becomes pliable, allowing it to be easily shaped to fit irregular defects in the skull.
Subsequent cooling causes the scaffold to lock in its temporary shape within the defect. Once in place, the SMP exhibits an interconnected pore morphology and bioactivity that enhance tissue regeneration, thanks to the polydopamine-coating, which promotes superior bioactivity, osteoblast adhesion and proliferation, osteogenic gene expression, and extracellular matrix (ECM) deposition. The formation of hydroxyapatite naturally regenerates bone that eventually replaces the foam with de-novo bone.
“The approach has a number of advantages, particularly when contrasted with other options under research, such as 3D printing methods,” said professor of biomedical engineering Mariah Hahn, PhD, of RPI. “A moldable bone-promoting scaffold could have broad use if it's successful. It takes advantages of the body's own healing ability, and it's a low-cost, ‘off the shelf’ solution that would not need to be pre-tailored to the individual defect.”
“Rigid bone graft cannot be readily manipulated to fit within the irregularly shaped bone defect. Due to the lack of fit and good contact with neighboring bone tissue, defect healing is compromised. This is like trying to fill in a missing puzzle piece with the wrong piece,” said associate professor of biomedical engineering Melissa Grunlan, PhD, of TAMU. “These bone defects can cause tremendous functional problems and aesthetic issues for individuals, so it was recognized that a better treatment would make a big impact.”
SMPs include foams, scaffolds, meshes, and other polymeric substrates that have the ability to return from a deformed (temporary) state to their original (permanent) shape induced by an external stimulus such as temperature change, an electric or magnetic field, light, or a solution. Similar to polymers in general, SMPs also cover a wide property-range from stable to biodegradable, from soft to hard, and from elastic to rigid, depending on the structural units that constitute the SMP.
Under development by researchers at the Rensselaer Polytechnic Institute and Texas A&M University, the bioactive foam is based on a shape memory polymer (SMP) made of crosslinked poly(ε-caprolactone) (PCL) diacrylate coated in a bioactive polydopamine. When exposed to warm saline, the foam material becomes pliable, allowing it to be easily shaped to fit irregular defects in the skull.
Subsequent cooling causes the scaffold to lock in its temporary shape within the defect. Once in place, the SMP exhibits an interconnected pore morphology and bioactivity that enhance tissue regeneration, thanks to the polydopamine-coating, which promotes superior bioactivity, osteoblast adhesion and proliferation, osteogenic gene expression, and extracellular matrix (ECM) deposition. The formation of hydroxyapatite naturally regenerates bone that eventually replaces the foam with de-novo bone.
“The approach has a number of advantages, particularly when contrasted with other options under research, such as 3D printing methods,” said professor of biomedical engineering Mariah Hahn, PhD, of RPI. “A moldable bone-promoting scaffold could have broad use if it's successful. It takes advantages of the body's own healing ability, and it's a low-cost, ‘off the shelf’ solution that would not need to be pre-tailored to the individual defect.”
“Rigid bone graft cannot be readily manipulated to fit within the irregularly shaped bone defect. Due to the lack of fit and good contact with neighboring bone tissue, defect healing is compromised. This is like trying to fill in a missing puzzle piece with the wrong piece,” said associate professor of biomedical engineering Melissa Grunlan, PhD, of TAMU. “These bone defects can cause tremendous functional problems and aesthetic issues for individuals, so it was recognized that a better treatment would make a big impact.”
SMPs include foams, scaffolds, meshes, and other polymeric substrates that have the ability to return from a deformed (temporary) state to their original (permanent) shape induced by an external stimulus such as temperature change, an electric or magnetic field, light, or a solution. Similar to polymers in general, SMPs also cover a wide property-range from stable to biodegradable, from soft to hard, and from elastic to rigid, depending on the structural units that constitute the SMP.
Latest Surgical Techniques News
- AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries
- Neural Device Regrows Surrounding Skull After Brain Implantation
- Surgical Innovation Cuts Ovarian Cancer Risk by 80%
- New Imaging Combo Offers Hope for High-Risk Heart Patients
- New Classification System Brings Clarity to Brain Tumor Surgery Decisions
- Boengineered Tissue Offers New Hope for Secondary Lymphedema Treatment
- Dual-Energy Catheter Brings New Flexibility to AFib Ablation
- 3D Bioprinting Pushes Boundaries in Quest for Custom Livers
- New AI Approach to Improve Surgical Imaging
- First-Of-Its-Kind Probe Monitors Fetal Health in Utero During Surgery
- Ultrasound Device Offers Non-Invasive Treatment for Kidney Stones
- Light-Activated Tissue Adhesive Patch Achieves Rapid and Watertight Neurosurgical Sealing
- Minimally Invasive Coronary Artery Bypass Method Offers Safer Alternative to Open-Heart Surgery
- Injectable Breast ‘Implant’ Offers Alternative to Traditional Surgeries
- AI Detects Stomach Cancer Risk from Upper Endoscopic Images
- NIR Light Enables Powering and Communicating with Implantable Medical Devices
Channels
Artificial Intelligence
view channelCritical Care
view channel
AI Tool Identifies Trauma Patients Requiring Blood Transfusions Before Reaching Hospital
Severe bleeding is one of the most common and preventable causes of death after traumatic injury. However, current tools often fail to accurately identify which patients urgently require blood transfusions,... Read more
New Clinical Guidelines to Reduce Central Line-Associated Bloodstream Infection
Central venous catheters are essential in intensive care units, delivering life-saving medications, monitoring cardiovascular function, and supporting blood purification. However, their widespread use... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Medtronic to Acquire Coronary Artery Medtech Company CathWorks
Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Medtronic and Mindray Expand Strategic Partnership to Ambulatory Surgery Centers in the U.S.
Mindray North America and Medtronic have expanded their strategic partnership to bring integrated patient monitoring solutions to ambulatory surgery centers across the United States. The collaboration... Read more
FDA Clearance Expands Robotic Options for Minimally Invasive Heart Surgery
Cardiovascular disease remains the world’s leading cause of death, with nearly 18 million fatalities each year, and more than two million patients undergo open-heart surgery annually, most involving sternotomy.... Read more







