Copper Complex Halts Botulinum Neurotoxin Poisoning
|
By HospiMedica International staff writers Posted on 12 Jun 2017 |
A new study describes how a readily available metal salt could provide a new therapy for Botulinum Neurotoxin type A (BoNT/A), the most common and deadly cause of human botulism.
Researchers at the Scripps Research Institute (TSRI; La Jolla, CA, USA), Boston University (MA, USA), and other institutions conducted a study that screened various triazole compounds against the BoNT/A light chain (LC) protease, a proteolytic enzyme that disrupts neuronal signaling to muscles. They found to their surprise that it was metal salts, and not the triazole compounds that showed marked inhibitory activity, and that copper cations in particular displayed noncompetitive inhibition of the LC, with mercury cations 10-fold more potent.
They then examined ligand-copper complexes in a cell-based model, and found that they too prevented BoNT/A cleavage of the endogenous protein substrate (SNAP-25) even at low μM concentrations. The researchers suggest that a bio-reductive mechanism caused an intracellular release of copper, which directly inhibited the BoNT/A protease. Further in-vivo experiments in rodents showed that copper (II) dithiocarbamate and bis(thiosemicarbazone) complexes could be used to treat the harmful effects of BoNT/A intoxication. The study was published on May 5, 2017, in JACS.
“Currently, botulism sufferers receive an anti-toxin medicine that can inactivate the toxin circulating in their system, thereby preventing further poisoning. However, the anti-toxin cannot reverse preexisting paralysis because the toxin acts inside cells,” said lead author Professor Kim Janda, PhD, of the TSRI department of chemistry. “Consequently, disease recovery can be slow, and paralysis may take weeks or months to wear off. This new therapy can readily enter cells where it can attack the etiological agent, a protease, which is responsible for paralysis seen from the neurotoxin.”
BoNT-A is probably best known as Botox, an injectable toxin commonly used to treat various movement disorders, such as focal dystonias, and in cosmetic treatments by paralyzing smooth muscles that cause wrinkles. It is also one of the most potent toxins on earth, and is classified as a potential bioterrorism threat, together with as Anthrax, Plague, Ebola, and other Category A priority pathogens.
Related Links:
Scripps Research Institute
Boston University
Researchers at the Scripps Research Institute (TSRI; La Jolla, CA, USA), Boston University (MA, USA), and other institutions conducted a study that screened various triazole compounds against the BoNT/A light chain (LC) protease, a proteolytic enzyme that disrupts neuronal signaling to muscles. They found to their surprise that it was metal salts, and not the triazole compounds that showed marked inhibitory activity, and that copper cations in particular displayed noncompetitive inhibition of the LC, with mercury cations 10-fold more potent.
They then examined ligand-copper complexes in a cell-based model, and found that they too prevented BoNT/A cleavage of the endogenous protein substrate (SNAP-25) even at low μM concentrations. The researchers suggest that a bio-reductive mechanism caused an intracellular release of copper, which directly inhibited the BoNT/A protease. Further in-vivo experiments in rodents showed that copper (II) dithiocarbamate and bis(thiosemicarbazone) complexes could be used to treat the harmful effects of BoNT/A intoxication. The study was published on May 5, 2017, in JACS.
“Currently, botulism sufferers receive an anti-toxin medicine that can inactivate the toxin circulating in their system, thereby preventing further poisoning. However, the anti-toxin cannot reverse preexisting paralysis because the toxin acts inside cells,” said lead author Professor Kim Janda, PhD, of the TSRI department of chemistry. “Consequently, disease recovery can be slow, and paralysis may take weeks or months to wear off. This new therapy can readily enter cells where it can attack the etiological agent, a protease, which is responsible for paralysis seen from the neurotoxin.”
BoNT-A is probably best known as Botox, an injectable toxin commonly used to treat various movement disorders, such as focal dystonias, and in cosmetic treatments by paralyzing smooth muscles that cause wrinkles. It is also one of the most potent toxins on earth, and is classified as a potential bioterrorism threat, together with as Anthrax, Plague, Ebola, and other Category A priority pathogens.
Related Links:
Scripps Research Institute
Boston University
Latest Critical Care News
- Whole-Heart Mapping Technology Provides Comprehensive Real-Time View of Arrhythmias
- Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems
- AI Stethoscope Spots Heart Valve Disease Earlier Than GPs
- Bioadhesive Patch Eliminates Cancer Cells That Remain After Brain Tumor Surgery
- Wearable Patch Provides Up-To-The-Minute Readouts of Medication Levels in Body
- New Spray-Mist Device Delivers Antibiotics Directly into Infected Tissue
- Living Implant Could End Daily Insulin Injections
- Intelligent Camera System Continuously Monitors Premature Babies in NICU
- Intranasal Spray to Prevent Illnesses from Respiratory Viruses
- Gut Bacteria from Amphibians and Reptiles Show Complete Tumor Elimination
- High-Dose Inhaled Nitric Oxide Emerges as Promising Antimicrobial Therapy
- AI Risk Prediction Tool Improves Treatment of Cancer Patients after Heart Attack
- Glowing Bacterial Sensors Could Improve Detection of Gut Illness
- Innovative ‘Poop Pills’ Dramatically Improve Cancer Treatment

- New Nanomaterial Kills Cancer Cells While Sparring Healthy Tissues
- AI Model Accurately Predicts Neurological Recovery After Cardiac Arrest
Channels
Artificial Intelligence
view channelSurgical Techniques
view channelAI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries
Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more
Neural Device Regrows Surrounding Skull After Brain Implantation
Placing electronic implants on the brain typically requires removing a portion of the skull, creating challenges for long-term access and safe closure. Current methods often involve temporarily replacing... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Medtronic to Acquire Coronary Artery Medtech Company CathWorks
Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Medtronic and Mindray Expand Strategic Partnership to Ambulatory Surgery Centers in the U.S.
Mindray North America and Medtronic have expanded their strategic partnership to bring integrated patient monitoring solutions to ambulatory surgery centers across the United States. The collaboration... Read more
FDA Clearance Expands Robotic Options for Minimally Invasive Heart Surgery
Cardiovascular disease remains the world’s leading cause of death, with nearly 18 million fatalities each year, and more than two million patients undergo open-heart surgery annually, most involving sternotomy.... Read more







