Hacked Conductive Plastics Kill Pathogenic Bacteria
| By HospiMedica International staff writers Posted on 14 Sep 2017 | 

Image: A new study claims bioelectric currents enhance the bactericidal effects of silver (Photo courtesy Laurent Mekul/KI).
			
			Applying a minute electrical current to an antimicrobial coating based on conjugated polymers and silver particles enhances the bactericidal effect, claims a new study.
Developed at the Karolinska Institutet (KI; Solna, Sweden), the new technology is based on antibacterial covalently coupled silver nanoparticles (AgNPs) integrated into an electrically conducting polymer layer made of a complex of poly(hydroxymethyl 3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT-MeOH:PSS) and (3-aminopropyl)triethoxysilane. The resultant composite material is thus consistently coated with covalently linked AgNPs.
The efficacy of the applied antibacterial coating--both with and without electrical charging--was tested against Staphylococcus aureus, a major colonizer of medical implants. The results showed that complete prevention of biofilm growth is obtained when the AgNP composite devices are charged with a square wave voltage input. The researchers concluded that electro-enhancement of the bactericidal effect of the coupled AgNPs offers a novel, efficient solution against biofilm colonization of medical implants. The study was published on August 14, 2017, in Advanced Healthcare Materials.
“It’s a phenomenon known as the bioelectric effect, whereby electrical fields weaken bacterial cells against external attacks,” said lead author Salvador Gomez-Carretero, MSc, a PhD student at the KI department of neuroscience. “We use electrical signals to increase the antimicrobial activity of the silver nanoparticles; this reduces the amount of silver needed, which is beneficial for both the patient and the environment.”
“By targeting the bacteria on several fronts at the same time, the effect of different small attacks becomes larger than when each factor is acting on its own,” said senior author Professor Agneta Richter-Dahlfors, phD, of the KI Medical Nanoscience Center. “It has not yet been tested in the clinic, but we believe this technology could be a good approach to limiting the spread of infectious bacteria and the incidence of hospital-acquired infections.”
The antimicrobial properties of silver are due to its ionized form (Ag+), and its ability to cause damage to cells by interacting with thiol-containing proteins and DNA. Empirically, silvers potency has been known for centuries. The Phoenicians stored water in silver coated bottles to discourage contamination; silver dollars used to be put into milk bottles to keep milk fresh, and water tanks of ships and airplanes that are "silvered" are able to render water potable for months. Out of all metals that exhibit oligodynamic antimicrobial properties, silver has the most effective antibacterial action and the least toxicity.
Related Links:
Karolinska Institutet
		
			
			
		
        		        
		        Developed at the Karolinska Institutet (KI; Solna, Sweden), the new technology is based on antibacterial covalently coupled silver nanoparticles (AgNPs) integrated into an electrically conducting polymer layer made of a complex of poly(hydroxymethyl 3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT-MeOH:PSS) and (3-aminopropyl)triethoxysilane. The resultant composite material is thus consistently coated with covalently linked AgNPs.
The efficacy of the applied antibacterial coating--both with and without electrical charging--was tested against Staphylococcus aureus, a major colonizer of medical implants. The results showed that complete prevention of biofilm growth is obtained when the AgNP composite devices are charged with a square wave voltage input. The researchers concluded that electro-enhancement of the bactericidal effect of the coupled AgNPs offers a novel, efficient solution against biofilm colonization of medical implants. The study was published on August 14, 2017, in Advanced Healthcare Materials.
“It’s a phenomenon known as the bioelectric effect, whereby electrical fields weaken bacterial cells against external attacks,” said lead author Salvador Gomez-Carretero, MSc, a PhD student at the KI department of neuroscience. “We use electrical signals to increase the antimicrobial activity of the silver nanoparticles; this reduces the amount of silver needed, which is beneficial for both the patient and the environment.”
“By targeting the bacteria on several fronts at the same time, the effect of different small attacks becomes larger than when each factor is acting on its own,” said senior author Professor Agneta Richter-Dahlfors, phD, of the KI Medical Nanoscience Center. “It has not yet been tested in the clinic, but we believe this technology could be a good approach to limiting the spread of infectious bacteria and the incidence of hospital-acquired infections.”
The antimicrobial properties of silver are due to its ionized form (Ag+), and its ability to cause damage to cells by interacting with thiol-containing proteins and DNA. Empirically, silvers potency has been known for centuries. The Phoenicians stored water in silver coated bottles to discourage contamination; silver dollars used to be put into milk bottles to keep milk fresh, and water tanks of ships and airplanes that are "silvered" are able to render water potable for months. Out of all metals that exhibit oligodynamic antimicrobial properties, silver has the most effective antibacterial action and the least toxicity.
Related Links:
Karolinska Institutet
Latest Critical Care News
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries  
- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
- Battery-Free Wireless Multi-Sensing Platform Revolutionizes Pressure Injury Detection
- Multimodal AI to Revolutionize Cardiovascular Disease Diagnosis and Treatment
- AI System Reveals Hidden Diagnostic Patterns in Electronic Health Records
- Highly Sensitive On-Skin Sensing Monitor Detects Vitamin B6 and Glucose in Sweat
- Artificial Intelligence Revolutionizing Pediatric Anesthesia Management
Channels
Surgical Techniques
view channel 
                    Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more 
                    Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel 
                    Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more 
                    VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more 
                    Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more 
                    First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel 
                    Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel 
                    Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more 
                    B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more 
                    CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more 
                    















 
								

 
								
 
								 
                     
                     
                    