Xenon Gas May Mitigate Blast-Induced Brain Injury
|
By HospiMedica International staff writers Posted on 08 Mar 2018 |

Image: A new study suggests xenon gas may protect the brain from blast trauma (Photo courtesy of ICL).
A new study demonstrates that xenon treatment after blast traumatic brain injury (bTBI) reduces initial injury and prevents subsequent injury development.
Researchers at Imperial College London (ICL; United Kingdom), the Royal Centre for Defence Medicine (RCDM; Birmingham, United Kingdom), and other institutions conducted a murine study that examined slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs). Using a dye that highlights damaged brain cells, the researchers were able to monitor injury development up to three days after exposure.
They then compared brain slices of mice given xenon treatment starting one hour after exposure to slices of mice exposed to blast, but without xenon treatment, assessing injury development at 24, 48, and 72 hours using propidium iodide fluorescence. They found that slices treated with xenon suffered significantly less injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon gas prevented injury from developing. The study was published on February 8, 2018, in the Journal of Neurotrauma.
“One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible,” said lead author Rita Campos-Pires, PhD, of ICL. “Xenon could be delivered easily by inhalation shortly after brain injury with relatively simple equipment. In addition to its potential for arresting injury development, xenon has an additional advantage of simultaneously providing analgesia.”
Xenon is a nonflammable inert gas that has been used as a general anesthetic since the 1950s. It is a pleiotropic drug known to act via a number of targets implicated in secondary injury development, including inhibition of N-methyl-D-aspartate receptors, activation of potassium channels, and anti-apoptotic action. Xenon has a number of unique advantages, including not being metabolized and rapidly crossing the blood–brain barrier, facilitating a rapid onset and offset of action, within minutes.
Researchers at Imperial College London (ICL; United Kingdom), the Royal Centre for Defence Medicine (RCDM; Birmingham, United Kingdom), and other institutions conducted a murine study that examined slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs). Using a dye that highlights damaged brain cells, the researchers were able to monitor injury development up to three days after exposure.
They then compared brain slices of mice given xenon treatment starting one hour after exposure to slices of mice exposed to blast, but without xenon treatment, assessing injury development at 24, 48, and 72 hours using propidium iodide fluorescence. They found that slices treated with xenon suffered significantly less injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon gas prevented injury from developing. The study was published on February 8, 2018, in the Journal of Neurotrauma.
“One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible,” said lead author Rita Campos-Pires, PhD, of ICL. “Xenon could be delivered easily by inhalation shortly after brain injury with relatively simple equipment. In addition to its potential for arresting injury development, xenon has an additional advantage of simultaneously providing analgesia.”
Xenon is a nonflammable inert gas that has been used as a general anesthetic since the 1950s. It is a pleiotropic drug known to act via a number of targets implicated in secondary injury development, including inhibition of N-methyl-D-aspartate receptors, activation of potassium channels, and anti-apoptotic action. Xenon has a number of unique advantages, including not being metabolized and rapidly crossing the blood–brain barrier, facilitating a rapid onset and offset of action, within minutes.
Latest Critical Care News
- CPR Guidelines Updated for Pediatric and Neonatal Emergency Care and Resuscitation
- Ingestible Capsule Monitors Intestinal Inflammation
- Wireless Implantable Sensor Enables Continuous Endoleak Monitoring
- Pulse Oximeter Index Offers Non-Invasive Guides for Fluid Therapy
- Wearable Patch for Early Skin Cancer Detection to Reduce Unnecessary Biopsies
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries

- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
Channels
Surgical Techniques
view channel
Robotic Assistant Delivers Ultra-Precision Injections with Rapid Setup Times
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, affecting nearly 200 million people, a figure expected to rise to 280 million by 2040. Current treatment involves doctors... Read more
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







