We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Bioengineered Heart Valves Guide Tissue Remodeling

By HospiMedica International staff writers
Posted on 21 May 2018
Image: A computer-designed customized regenerative heart valve (Photo courtesy of UZH).
Image: A computer-designed customized regenerative heart valve (Photo courtesy of UZH).
A new study suggests that tissue-engineered heart valve (TEHVs) designed with the aid of computer simulations could provide long-term functionality.

Researchers at the University of Zurich (UZH; Switzerland), Eindhoven University of Technology (TUE; The Netherlands), and other institutions used computational modeling to design regenerative TEHVs grown on polymer scaffolds seeded with vascular cells. After four weeks in a bioreactor, the grafts were decellularized prior to implantation as pulmonary valve replacements in sheep, using a minimally invasive transcatheter technique. The TEHVs were then monitored for one year using multi-modal in-vivo imaging and comprehensive tissue remodeling assessments.

At follow-up, 9 of the 11 grafts remained functional. Computational modeling predicted that the valve leaflets would shorten during dynamic remodeling before reaching equilibrium, which was confirmed in the sheep. The computer simulation also showed that TEHV failure could be predicted in advance for non-physiological pressure loading. The researchers suggest that future tissue engineering strategies should include computational simulation so as to lead to more predictable clinical translation. The study was published on May 9, 2018, in Science Translational Medicine.

“One of the biggest challenges for complex implants such as heart valves is that each patient's potential for regeneration is different. There is therefore no one-size-fits-all solution,” said senior author Professor Simon Hoerstrup, MD, PhD, of UZH. “Thanks to the simulations, we can optimize the design and composition of the regenerative heart valves and develop customized implants for use in therapy.”

Surgical correction of chronic heart disease (CHD) defects such as Tetralogy of Fallot and pulmonary atresia has increased dramatically. But despite excellent long-term survival, they typically require multiple operative procedures until adulthood, as the homograft pulmonary artery conduits or BJV grafts have no ability to grow and remodel with the somatic growth of the child. Additionally, an intense inflammatory reaction to these materials commonly occurs, resulting in early calcification and failure, leading typically to the need for 5-7 operative procedures.

Related Links:
University of Zurich
Eindhoven University of Technology
Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Head Rest
Medifa 61114_3
New
Mammo DR Retrofit Solution
DR Retrofit Mammography

Channels

Surgical Techniques

view channel
Image: The novel approach combining MRI, fluid dynamics, and custom algorithms predicts brain cancer recurrence sites (photo courtesy of AdobeStock)

Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next

Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more