Automated System Identifies Ventilated Patients at Risk
|
By HospiMedica International staff writers Posted on 12 Jun 2018 |
An automated system for detecting mechanically ventilated patients at risk of ventilator-associated events surpasses traditional surveillance methods, according to a new study.
Developed at Massachusetts General Hospital (MGH; Boston, USA), the Georgia Institute of Technology (Atlanta, USA), and Harvard Medical School (HMS; Boston, MA, USA), the automated process uses an algorithm that analyses physiologic data to detect increases in positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (FiO2); queries the electronic health record (EHR) for leukopenia or leukocytosis and antibiotic initiation data; and retrieves and interprets microbiology reports.
Based on the data, the algorithm can determine whether criteria were met for a ventilator-associated event and, if so, which level of event:
• A ventilator-associated condition (VAC), an increase in a patient's need for oxygen without evidence of infection.
• An infection-related ventilator-associated complication (IVAC), with increased oxygen need accompanied by signs of infection, such as fever, elevated white blood cell count or an antibiotic prescription.
• And possible ventilator-associated pneumonia (VAP), with evidence of bacterial growth in the respiratory system, along with the factors listed above.
A validation study to test the algorithm followed 1,234 patients admitted to the intensive care unit (ICU), 431 of who received ventilator support. During that period, manual surveillance produced accuracies of 71%, 98% and 87%, respectively, while results for the automated system were 85%, 99% and 100% accuracy. The drop-off in accuracy of the automated system during the validation period was the result a temporary interruption of data availability while software was being upgraded. The study was published on May 17, 2018, in Infection Control & Hospital Epidemiology.
“Manual surveillance made many more errors than automated surveillance, including false positives, reporting cases that on review, did not meet criteria for what are called ventilator-associated events; misclassifications, reporting an event as more or less serious than it really was; and failure to detect and report cases that, on closer inspection, actually met criteria,” said lead author Erica Shenoy, MD, PhD, of the MGH division of infectious diseases. “In contrast, so long as the necessary electronic data were available, the automated method performed perfectly.”
Traditional surveillance of patients receiving mechanical ventilation involves manual recording of ventilator settings every 12 hours and adjusted throughout the day to accommodate the patient's needs. The settings, which reflect the pressure required to keep a patient's lungs open at the end of a breath and the percentage of oxygen being delivered to the patient, are reviewed by an infection control practitioner for signs that indicate possible VAP.
Related Links:
Massachusetts General Hospital
Georgia Institute of Technology
Harvard Medical School
Developed at Massachusetts General Hospital (MGH; Boston, USA), the Georgia Institute of Technology (Atlanta, USA), and Harvard Medical School (HMS; Boston, MA, USA), the automated process uses an algorithm that analyses physiologic data to detect increases in positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (FiO2); queries the electronic health record (EHR) for leukopenia or leukocytosis and antibiotic initiation data; and retrieves and interprets microbiology reports.
Based on the data, the algorithm can determine whether criteria were met for a ventilator-associated event and, if so, which level of event:
• A ventilator-associated condition (VAC), an increase in a patient's need for oxygen without evidence of infection.
• An infection-related ventilator-associated complication (IVAC), with increased oxygen need accompanied by signs of infection, such as fever, elevated white blood cell count or an antibiotic prescription.
• And possible ventilator-associated pneumonia (VAP), with evidence of bacterial growth in the respiratory system, along with the factors listed above.
A validation study to test the algorithm followed 1,234 patients admitted to the intensive care unit (ICU), 431 of who received ventilator support. During that period, manual surveillance produced accuracies of 71%, 98% and 87%, respectively, while results for the automated system were 85%, 99% and 100% accuracy. The drop-off in accuracy of the automated system during the validation period was the result a temporary interruption of data availability while software was being upgraded. The study was published on May 17, 2018, in Infection Control & Hospital Epidemiology.
“Manual surveillance made many more errors than automated surveillance, including false positives, reporting cases that on review, did not meet criteria for what are called ventilator-associated events; misclassifications, reporting an event as more or less serious than it really was; and failure to detect and report cases that, on closer inspection, actually met criteria,” said lead author Erica Shenoy, MD, PhD, of the MGH division of infectious diseases. “In contrast, so long as the necessary electronic data were available, the automated method performed perfectly.”
Traditional surveillance of patients receiving mechanical ventilation involves manual recording of ventilator settings every 12 hours and adjusted throughout the day to accommodate the patient's needs. The settings, which reflect the pressure required to keep a patient's lungs open at the end of a breath and the percentage of oxygen being delivered to the patient, are reviewed by an infection control practitioner for signs that indicate possible VAP.
Related Links:
Massachusetts General Hospital
Georgia Institute of Technology
Harvard Medical School
Latest Critical Care News
- Ingestible Capsule Monitors Intestinal Inflammation
- Wireless Implantable Sensor Enables Continuous Endoleak Monitoring
- Pulse Oximeter Index Offers Non-Invasive Guides for Fluid Therapy
- Wearable Patch for Early Skin Cancer Detection to Reduce Unnecessary Biopsies
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries

- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
- Battery-Free Wireless Multi-Sensing Platform Revolutionizes Pressure Injury Detection
Channels
Surgical Techniques
view channel
Robotic Assistant Delivers Ultra-Precision Injections with Rapid Setup Times
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, affecting nearly 200 million people, a figure expected to rise to 280 million by 2040. Current treatment involves doctors... Read more
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







