HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Novel Biomaterial Prevents Post-Surgical Adhesion

By HospiMedica International staff writers
Posted on 03 Sep 2018
Image: Live cells (a) outside PEC barrier (b) indicate it does not create a toxic environment (Photo courtesy of Noshir Langrana/ Rutgers).
Image: Live cells (a) outside PEC barrier (b) indicate it does not create a toxic environment (Photo courtesy of Noshir Langrana/ Rutgers).
A new study shows how an innovative polyelectrolyte complex (PEC) can provide a barrier that prevents adhesions in post-operative complications.

Researchers at Rutgers University (Piscataway, NJ, USA) have developed a PEC film composed of an optimal ratio of chitosan and polygalacturonic acid (PgA) that can prevent post-surgical intra-peritoneal adhesion formation. The design is based on the fact that oppositely charged polymers, with negative functional groups--such as carboxylate and sulfate--have a demonstrated inhibitory effect on adhesions of macrophages, lymphocytes, platelets, and fibroblasts. Chitosan-PgA PEC film can thus prevent adhesions by providing a physical barrier that stops wound surfaces from joining.

The non-toxic, material complex can be used for both laparoscopic and laparotomy surgeries, since it is flexible and reasonably strong. Processing is completely aqueous based and does not require any toxic solvent, and the result is both biocompatible and biodegradable, dissolving within one to two weeks. In addition, substrate-cells electrostatic interactions with the film itself also help prevent adhesions, as the surfaces are non-permissive for viable fibroblast and macrophage attachment. The study was published in the August 2018 issue of Technology.

“Adhesions are an abnormal union of membranous surfaces. They are a painful and expensive consequence of abdominal surgeries, specifically in the peritoneal cavity,” concluded senior author Professor Noshir Langrana, PhD, and colleagues of Rutgers University. “This complication requires a second surgery to remove the problem, known as adhesiolysis, which we are trying to avoid. Current solutions to adhesion formation either lack efficacy, or induce an inflammatory response in the peritoneum.”

Adhesions are fibrous bridges that form between tissues and organs in abdominal, pericardial, and peridural spaces as a result of surgery, injury, inflammation, or infection. Adhesion can cause extreme pain discomfort, reduced mobility, difficulty breathing, and infertility. The success rates of available anti-adhesive barriers are still low, and there is a need for development of more effective biomaterials to significantly reduce adhesions.

Related Links:
Rutgers University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Syringes
Prefilled Saline Flush Syringes
Half Apron
Demi

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more