We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Hydrogen Peroxide Microgel Powder Helps Wounds Heal Better

By HospiMedica International staff writers
Posted on 27 Nov 2018
Image: A new study asserts that microgel powder can disinfect wounds (Photo courtesy of MTU).
Image: A new study asserts that microgel powder can disinfect wounds (Photo courtesy of MTU).
A novel microgel powder that generates antipathogenic levels of hydrogen peroxide (H2O2) through simple rehydration could provide a portable disinfectant, according to a new study.

Developed by researchers at Michigan Technological University (MTU; Houghton, USA), the microgel powder is based on Catechol, an adhesive moiety found in mussel adhesive proteins. When catechol autoxidizes following contact with solutions with physiological pH, it generates 1-5 mM of H2O2 for up to four days. The researchers studied the microgel's effects on thin-walled and gram-positive Staphylococcus epidermidis, the more impenetrable and gram-negative Escherichia coli--two common bacterial strains--and also against two viruses, bovine viral diarrhea virus (BVDV) and porcine parovirus (PPV).

The results revealed that sustained release of the low concentration H2O2 (several orders of magnitude lower than that previously reported for antipathogenic activity) was antimicrobial against the bacteria, and antiviral against both extremely resistant non-enveloped PPV and the easier to inactivate enveloped BVDV. Most notably, the microgels reduced the infectivity of the more biocide resistant non-envelope virus by a 3 log reduction value, a 99.999% reduction. The study was published on October 26, 2018, in Acta Biomaterialia.

“The microgels do not contain a reservoir for storing the reactive H2O2 and can potentially function as a lightweight and portable dried powder source for the disinfectant for a wide range of applications,” said senior author biomedical engineer Bruce Lee, PhD. “We haven't tested any antibiotic-resistant bacterial strains yet, but the more we can get away from using antibiotics in the first place, the better. We want to demonstrate under what conditions it promotes healing, and how a cell responds to it.”

Microgels are like tiny bubbles of Jell-o, in essence a polymer network. To the naked eye, the dry form is a nondescript powder. But when suspended in a solution with neutral or a slightly alkaline pH, such as distilled water or a saline solution, the micron-sized microgels start generating H2O2. Once the microgel powder is dried again, the material basically resets and can be reused, and its potency remains high. The powder can be used in space stations, remote areas, war zones, or practically anywhere.

Related Links:
Michigan Technological University

Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Open Stapler
PROXIMATE Linear Cutter
Ultrasound Needle Guidance System
SonoSite L25

Channels

Surgical Techniques

view channel
Image: The novel approach combining MRI, fluid dynamics, and custom algorithms predicts brain cancer recurrence sites (photo courtesy of AdobeStock)

Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next

Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more