Automated Health Data Tools Detect Sepsis in Newborns
|
By HospiMedica International staff writers Posted on 11 Mar 2019 |
Machine-learning models can identify neonatal intensive care unit (NICU) infants at risk of sepsis hours before clinicians recognize the life-threatening condition.
Researchers at the Children's Hospital of Philadelphia (CHOP; PA, USA) conducted a retrospective case control study of 618 infants hospitalized in the CHOP NICU between September 2014 and November 2017 who received at least one sepsis evaluation before 12 months of age; the study cohort had a median gestational age of 34 weeks. The researchers then developed a list of 36 features extracted from the electronic health records (EHRs) that were associated or suspected to be associated with infant sepsis, which were grouped under vital signs, laboratory values, co-morbidities, and clinical factors.
The researchers then used 10-fold nested cross-validation to train eight machine-learning models to classify inputs as sepsis positive or negative. As the data came from a retrospective sample of NICU patients, the researchers were able to compare each of the model's predictions to the actual infants subsequent findings. On final analysis, six of the eight models performed well in accurately predicting sepsis up to four hours before clinical recognition of the condition. The study was published on February 22, 2019, in PLOS One.
“Because early detection and rapid intervention is essential in cases of sepsis, machine-learning tools like this offer the potential to improve clinical outcomes in these infants,” said lead author Aaron Masino, PhD, of the department of biomedical and health informatics. “Follow-up clinical studies will allow researchers to evaluate how well such systems perform in a hospital setting. If research validates some of these models, we may develop a tool to support clinical decisions and improve outcomes in critically ill infants.”
While relatively rare in healthy, full-term infants, sepsis rates are 200 times higher in premature or chronically hospitalized infants. Survivors of infant sepsis may later suffer long-term problems such as chronic lung disease, neurodevelopmental disabilities, and prolonged hospital stays. Rapid diagnosis of sepsis is also often difficult in hospitalized infants, due to ambiguous clinical signs and inaccuracies in screening tests. Delays in recognizing sepsis can also cause delays in intervention, including antibiotic treatment and supportive care.
Related Links:
Children's Hospital of Philadelphia
Researchers at the Children's Hospital of Philadelphia (CHOP; PA, USA) conducted a retrospective case control study of 618 infants hospitalized in the CHOP NICU between September 2014 and November 2017 who received at least one sepsis evaluation before 12 months of age; the study cohort had a median gestational age of 34 weeks. The researchers then developed a list of 36 features extracted from the electronic health records (EHRs) that were associated or suspected to be associated with infant sepsis, which were grouped under vital signs, laboratory values, co-morbidities, and clinical factors.
The researchers then used 10-fold nested cross-validation to train eight machine-learning models to classify inputs as sepsis positive or negative. As the data came from a retrospective sample of NICU patients, the researchers were able to compare each of the model's predictions to the actual infants subsequent findings. On final analysis, six of the eight models performed well in accurately predicting sepsis up to four hours before clinical recognition of the condition. The study was published on February 22, 2019, in PLOS One.
“Because early detection and rapid intervention is essential in cases of sepsis, machine-learning tools like this offer the potential to improve clinical outcomes in these infants,” said lead author Aaron Masino, PhD, of the department of biomedical and health informatics. “Follow-up clinical studies will allow researchers to evaluate how well such systems perform in a hospital setting. If research validates some of these models, we may develop a tool to support clinical decisions and improve outcomes in critically ill infants.”
While relatively rare in healthy, full-term infants, sepsis rates are 200 times higher in premature or chronically hospitalized infants. Survivors of infant sepsis may later suffer long-term problems such as chronic lung disease, neurodevelopmental disabilities, and prolonged hospital stays. Rapid diagnosis of sepsis is also often difficult in hospitalized infants, due to ambiguous clinical signs and inaccuracies in screening tests. Delays in recognizing sepsis can also cause delays in intervention, including antibiotic treatment and supportive care.
Related Links:
Children's Hospital of Philadelphia
Latest Critical Care News
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries

- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
- Battery-Free Wireless Multi-Sensing Platform Revolutionizes Pressure Injury Detection
- Multimodal AI to Revolutionize Cardiovascular Disease Diagnosis and Treatment
- AI System Reveals Hidden Diagnostic Patterns in Electronic Health Records
- Highly Sensitive On-Skin Sensing Monitor Detects Vitamin B6 and Glucose in Sweat
- Artificial Intelligence Revolutionizing Pediatric Anesthesia Management
Channels
Surgical Techniques
view channel
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more
Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







