HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Automated Health Data Tools Detect Sepsis in Newborns

By HospiMedica International staff writers
Posted on 11 Mar 2019
Machine-learning models can identify neonatal intensive care unit (NICU) infants at risk of sepsis hours before clinicians recognize the life-threatening condition.

Researchers at the Children's Hospital of Philadelphia (CHOP; PA, USA) conducted a retrospective case control study of 618 infants hospitalized in the CHOP NICU between September 2014 and November 2017 who received at least one sepsis evaluation before 12 months of age; the study cohort had a median gestational age of 34 weeks. The researchers then developed a list of 36 features extracted from the electronic health records (EHRs) that were associated or suspected to be associated with infant sepsis, which were grouped under vital signs, laboratory values, co-morbidities, and clinical factors.

The researchers then used 10-fold nested cross-validation to train eight machine-learning models to classify inputs as sepsis positive or negative. As the data came from a retrospective sample of NICU patients, the researchers were able to compare each of the model's predictions to the actual infants subsequent findings. On final analysis, six of the eight models performed well in accurately predicting sepsis up to four hours before clinical recognition of the condition. The study was published on February 22, 2019, in PLOS One.

“Because early detection and rapid intervention is essential in cases of sepsis, machine-learning tools like this offer the potential to improve clinical outcomes in these infants,” said lead author Aaron Masino, PhD, of the department of biomedical and health informatics. “Follow-up clinical studies will allow researchers to evaluate how well such systems perform in a hospital setting. If research validates some of these models, we may develop a tool to support clinical decisions and improve outcomes in critically ill infants.”

While relatively rare in healthy, full-term infants, sepsis rates are 200 times higher in premature or chronically hospitalized infants. Survivors of infant sepsis may later suffer long-term problems such as chronic lung disease, neurodevelopmental disabilities, and prolonged hospital stays. Rapid diagnosis of sepsis is also often difficult in hospitalized infants, due to ambiguous clinical signs and inaccuracies in screening tests. Delays in recognizing sepsis can also cause delays in intervention, including antibiotic treatment and supportive care.

Related Links:
Children's Hospital of Philadelphia

Gold Member
CPAP Ventilator
Somnus DM18
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mammography System (Analog)
MAM VENUS
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more