We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Plant Cellulose Considered As Bone Implant Material

By HospiMedica International staff writers
Posted on 03 Apr 2019
Image: A new study claims nanocrystals derived from plant cellulose can form a strong but lightweight aerogel (Photo courtesy of Clare Kiernan/ UBC).
Image: A new study claims nanocrystals derived from plant cellulose can form a strong but lightweight aerogel (Photo courtesy of Clare Kiernan/ UBC).
A nanocrystal aerogel formed from plant cellulose could provide the scaffolding required for the growth of new bone, claims a new study.

Developed by researchers at the University of British Columbia (UBC; Vancouver, Canada) and McMaster University (Hamilton, ON, Canada), the biologic aerogel material is made from chemically cross-linked cellulose nanocrystals (CNC), and is designed to support osteoblast proliferation and enhance bone regeneration. The highly porous CNC aerogels also promote and support the growth of hydroxyapatite on their surface, as was demonstrated when submerged in simulated body fluid solutions.

In an in-vivo study of the CNC aerogels, which were implanted into the calvarian bone of adult male Long Evans rats, their osteconductive properties were demonstrated, and an increase in bone volume of up to 50% was shown, as compared to sham sites. And at 3- and 12-week time points, the CNC aerogels showed an increased bone volume fraction of 33% and 50%, respectively. The study was published on March 15, 2019, in Acta Biomaterialia.

“We can see this aerogel being used for a number of applications, including dental implants and spinal and joint replacement surgeries, and it will be economical because the raw material, the nanocellulose, is already being produced in commercial quantities,” said senior author biomedical engineer Professor Kathryn Grandfield, PhD, of McMaster University. “This summer, we will study the mechanisms between the bone and implant that lead to bone growth. We'll also look at how the implant degrades using advanced microscopes.”

“Most bone graft or implants are made of hard, brittle ceramic that doesn't always conform to the shape of the hole, and those gaps can lead to poor growth of the bone and implant failure,” said lead author Daniel Osorio, MSc, a PhD student in chemical engineering at McMaster University. “We created this cellulose nanocrystal aerogel as a more effective alternative to these synthetic materials.”

Cellulose is a homopolysaccharide of glucopyranose that can be either regenerated to form organized fibers or remain non-regenerated with unorganized fibers. Structurally, cellulose consists of crystalline and amorphous regions; by treating it with strong acid, the amorphous regions can be broken up to produce CNC. Cellulose is an important structural component of the primary cell wall of green plants, and is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, and of wood 40–50%.

Related Links:
University of British Columbia
McMaster University

Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Electric Bed
DIXION Intensive Care Bed
Radiation Safety Barrier
RayShield Intensi-Barrier

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more