Elasticity Training Helps AI Diagnose Breast Cancer
|
By HospiMedica International staff writers Posted on 22 Jul 2019 |
Teaching artificial intelligence (AI) algorithms to identify the ultrasound elastic heterogeneity of a tumor can be used to distinguish benign tumors from their malignant counterparts, according to a new study.
Researchers at the University of Southern California (USC; Los Angeles, USA), Rensselaer Polytechnic Institute (RPI; Troy, NY, USA), and other institutions created physics-based models that simulated varying levels of the two key ultrasound properties of a cancerous breast tumor - elastic heterogeneity and nonlinear elastic response. They then used thousands of data inputs derived from the models in order to train a deep convolutional neural network (CNN) to classify tumors as malignant or benign.
A 5-layer CNN was trained with 8,000 samples for heterogeneity, and a 4-layer CNN was trained with 4,000 samples for nonlinear elasticity. When queried on additional synthetic images, the CNNs achieved classification accuracies of 99.7%−99.9%. The researchers then applied the nonlinear elasticity classifier, which was trained entirely using simulated data, in order to classify displacement images obtained from ten patients with breast lesions; the CNN correctly classified eight out of ten cases.
“The general consensus is these types of algorithms have a significant role to play, including from imaging professionals whom it will impact the most,” said senior author Professor Assad Oberai, PhD, of the USC department of aerospace and mechanical engineering. “However, these algorithms will be most useful when they do not serve as black boxes, but instead, a tool that helps guide radiologists to more accurate conclusions.”
Elastography relies on the generation of shear waves determined by the displacement of tissues induced by the force of a focused ultrasound beam or by external pressure. The shear waves are lateral waves, with a motion perpendicular to the direction of the generating force, traveling slowly, and are rapidly attenuated by tissue. The propagation velocity of the shear waves correlates with the elasticity of tissue.
Related Links:
University of Southern California
Rensselaer Polytechnic Institute
Researchers at the University of Southern California (USC; Los Angeles, USA), Rensselaer Polytechnic Institute (RPI; Troy, NY, USA), and other institutions created physics-based models that simulated varying levels of the two key ultrasound properties of a cancerous breast tumor - elastic heterogeneity and nonlinear elastic response. They then used thousands of data inputs derived from the models in order to train a deep convolutional neural network (CNN) to classify tumors as malignant or benign.
A 5-layer CNN was trained with 8,000 samples for heterogeneity, and a 4-layer CNN was trained with 4,000 samples for nonlinear elasticity. When queried on additional synthetic images, the CNNs achieved classification accuracies of 99.7%−99.9%. The researchers then applied the nonlinear elasticity classifier, which was trained entirely using simulated data, in order to classify displacement images obtained from ten patients with breast lesions; the CNN correctly classified eight out of ten cases.
“The general consensus is these types of algorithms have a significant role to play, including from imaging professionals whom it will impact the most,” said senior author Professor Assad Oberai, PhD, of the USC department of aerospace and mechanical engineering. “However, these algorithms will be most useful when they do not serve as black boxes, but instead, a tool that helps guide radiologists to more accurate conclusions.”
Elastography relies on the generation of shear waves determined by the displacement of tissues induced by the force of a focused ultrasound beam or by external pressure. The shear waves are lateral waves, with a motion perpendicular to the direction of the generating force, traveling slowly, and are rapidly attenuated by tissue. The propagation velocity of the shear waves correlates with the elasticity of tissue.
Related Links:
University of Southern California
Rensselaer Polytechnic Institute
Latest AI News
Channels
Critical Care
view channel
AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
For decades, doctors have relied on standardized scoring systems to assess patients with the most common type of heart attack—non-ST-elevation acute coronary syndrome (NSTE-ACS). The GRACE score, used... Read more
'Universal' Kidney to Match Any Blood Type
Blood-type incompatibility has long been one of the greatest obstacles in organ transplantation, forcing thousands of patients—particularly those with type O blood—to wait years longer for compatible donors.... Read moreSurgical Techniques
view channel
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more
Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







