Cardiac Telemetry Improves AF Detection Following Stroke
| By HospiMedica International staff writers Posted on 23 Jul 2019 | 

Image: An example of an electrocardiomatrix, with flagged events (Photo courtesy of U-M).
			
			A new study describes how electrocardiogram (ECG) telemetry data is analyzed in a three-dimensional (3D) matrix to allow for more accurate P-wave analysis.
Developed at the University of Michigan (U-M; Ann Arbor, USA), electrocardiomatrix is designed to convert two-dimensional signals from a patient’s ECG into a 3D heatmap so as to provide fast, intuitive detection of cardiac arrhythmias. To test the technology, U-M researchers conducted a prospective, observational study that analyzed data from 265 ischemic stroke and transient ischemic attack (TIA) patients between April 2017 and January 2018. Atrial fibrillation (AF) episodes lasting more than 30 seconds were identified through review of electrocardiomatrix matrices by a non-cardiologist.
The electrocardiomatrix results were then compared with AF identified directly by a cardiologist through standard telemetry. The results revealed that electrocardiomatrix successfully identified AF in 260 (98%) of cases. The positive predictive value of electrocardiomatrix compared with the clinical documentation was 86% overall, and 100% among a subset of patients with no history of AF. For the five false-positive and five false-negative cases, expert overview disagreed with the clinical documentation and confirmed the electrocardiomatrix-based diagnosis. The study was published on July 1, 2019, in Stroke.
“Electrocardiomatrix goes further than standard cardiac telemetry by examining large amounts of telemetry data in a way that's so detailed it's impractical for individual clinicians to attempt,” said senior author and electrocardiomatrix co-inventor Jimo Borjigin, PhD, of the department of molecular and integrative physiology at U-M Medical School. “Importantly, the electrocardiomatrix identification method was highly accurate for the 212 patients who did not have a history of AF. This group is most clinically relevant, because of the importance of determining whether stroke patients have previously undetected AF.”
“After a stroke, neurologists are tasked with identifying which risk factors may have contributed in order to do everything possible to prevent another event. That makes detecting irregular heartbeat an urgent concern for these patients,” said lead author professor of neurology Devin Brown, MD. “As a physician can't reasonably review every single heartbeat, current monitoring technology flags heart rates that are too high. More accurate identification of AF should translate into more strokes prevented.”
Related Links:
University of Michigan
		
			
			
		
        		        
		        Developed at the University of Michigan (U-M; Ann Arbor, USA), electrocardiomatrix is designed to convert two-dimensional signals from a patient’s ECG into a 3D heatmap so as to provide fast, intuitive detection of cardiac arrhythmias. To test the technology, U-M researchers conducted a prospective, observational study that analyzed data from 265 ischemic stroke and transient ischemic attack (TIA) patients between April 2017 and January 2018. Atrial fibrillation (AF) episodes lasting more than 30 seconds were identified through review of electrocardiomatrix matrices by a non-cardiologist.
The electrocardiomatrix results were then compared with AF identified directly by a cardiologist through standard telemetry. The results revealed that electrocardiomatrix successfully identified AF in 260 (98%) of cases. The positive predictive value of electrocardiomatrix compared with the clinical documentation was 86% overall, and 100% among a subset of patients with no history of AF. For the five false-positive and five false-negative cases, expert overview disagreed with the clinical documentation and confirmed the electrocardiomatrix-based diagnosis. The study was published on July 1, 2019, in Stroke.
“Electrocardiomatrix goes further than standard cardiac telemetry by examining large amounts of telemetry data in a way that's so detailed it's impractical for individual clinicians to attempt,” said senior author and electrocardiomatrix co-inventor Jimo Borjigin, PhD, of the department of molecular and integrative physiology at U-M Medical School. “Importantly, the electrocardiomatrix identification method was highly accurate for the 212 patients who did not have a history of AF. This group is most clinically relevant, because of the importance of determining whether stroke patients have previously undetected AF.”
“After a stroke, neurologists are tasked with identifying which risk factors may have contributed in order to do everything possible to prevent another event. That makes detecting irregular heartbeat an urgent concern for these patients,” said lead author professor of neurology Devin Brown, MD. “As a physician can't reasonably review every single heartbeat, current monitoring technology flags heart rates that are too high. More accurate identification of AF should translate into more strokes prevented.”
Related Links:
University of Michigan
Latest Critical Care News
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries  
- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
- Battery-Free Wireless Multi-Sensing Platform Revolutionizes Pressure Injury Detection
- Multimodal AI to Revolutionize Cardiovascular Disease Diagnosis and Treatment
- AI System Reveals Hidden Diagnostic Patterns in Electronic Health Records
- Highly Sensitive On-Skin Sensing Monitor Detects Vitamin B6 and Glucose in Sweat
- Artificial Intelligence Revolutionizing Pediatric Anesthesia Management
Channels
Surgical Techniques
view channel 
                    Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more 
                    Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel 
                    Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more 
                    VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more 
                    Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more 
                    First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel 
                    Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel 
                    Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more 
                    B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more 
                    CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more 
                    















 
								

 
								
 
								 
                     
                     
                    