Structured Anti-Bacterial Phage Hydrogel Heals Itself
|
By HospiMedica International staff writers Posted on 06 Aug 2019 |

Image: A bacteria-killing gel composed of friendly phages can heal itself when cut (Photo courtesy of JD Howell / McMaster University).
A new study describes how an anti-bacterial gel with self-organizing bundles of phage nanofilaments can be readily modified to target specific cells, including tumors.
Developed by researchers at McMaster University (Hamilton, ON, Canada), the novel gel is composed of self-organized M13 bacteriophage bundles, each made up of hundreds of cross-linked nanofilaments, which are capable of adsorbing water at up to 16 times their weight. The hierarchical M13 hydrogels exhibit several advanced properties at room temperature, including self-healing under appropriate biological conditions, autofluorescence in three channels, biodegradation, non-destructive imaging capability and bioactivity toward host bacteria.
The bacteriophages assemble themselves spontaneously into liquid crystals; with the help of a chemical binder, they readily form a gelatin-like substance that can heal itself when cut. The cross-linked, self-organized hydrogel structures can thus serve as building blocks for bottom-up synthesis. Yellow in color, and with a consistency that resembles jelly, a single milliliter of the antibacterial hydrogel contains about 300 trillion phages. The study describing how the hydrogel is made was published on July 24, 2019, in ACS Chemistry of Materials.
“The DNA of phages can readily be modified to target specific cells, including cancer cells. Through a Nobel Prize-winning technology called phage display, it's even possible to find phages that target plastics or environmental pollutants,” said senior author Zeinab Hosseini-Doust, PhD, of the department of chemical engineering. “Being able to shape phages into solid form opens new vistas of possibility, just as their utility in fighting diseases is being realized, and holds promise for numerous beneficial applications in medicine and environmental protection.”
Bacteriophages are essentially bionanoparticles with a protein coat, the composition of which can be controlled with atomic precision via genetic engineering. They recognize their host via proteins that bind to structures on the surface of the bacteria. Phage proteins are also very stable; some of them require heating at temperatures above 90°C to destroy their 3D structure. Both properties provide durability in harsh environmental conditions, and allow bacteriophages to wait for the next opportunity to infect new host bacteria.
Related Links:
McMaster University
Developed by researchers at McMaster University (Hamilton, ON, Canada), the novel gel is composed of self-organized M13 bacteriophage bundles, each made up of hundreds of cross-linked nanofilaments, which are capable of adsorbing water at up to 16 times their weight. The hierarchical M13 hydrogels exhibit several advanced properties at room temperature, including self-healing under appropriate biological conditions, autofluorescence in three channels, biodegradation, non-destructive imaging capability and bioactivity toward host bacteria.
The bacteriophages assemble themselves spontaneously into liquid crystals; with the help of a chemical binder, they readily form a gelatin-like substance that can heal itself when cut. The cross-linked, self-organized hydrogel structures can thus serve as building blocks for bottom-up synthesis. Yellow in color, and with a consistency that resembles jelly, a single milliliter of the antibacterial hydrogel contains about 300 trillion phages. The study describing how the hydrogel is made was published on July 24, 2019, in ACS Chemistry of Materials.
“The DNA of phages can readily be modified to target specific cells, including cancer cells. Through a Nobel Prize-winning technology called phage display, it's even possible to find phages that target plastics or environmental pollutants,” said senior author Zeinab Hosseini-Doust, PhD, of the department of chemical engineering. “Being able to shape phages into solid form opens new vistas of possibility, just as their utility in fighting diseases is being realized, and holds promise for numerous beneficial applications in medicine and environmental protection.”
Bacteriophages are essentially bionanoparticles with a protein coat, the composition of which can be controlled with atomic precision via genetic engineering. They recognize their host via proteins that bind to structures on the surface of the bacteria. Phage proteins are also very stable; some of them require heating at temperatures above 90°C to destroy their 3D structure. Both properties provide durability in harsh environmental conditions, and allow bacteriophages to wait for the next opportunity to infect new host bacteria.
Related Links:
McMaster University
Latest Critical Care News
- CPR Guidelines Updated for Pediatric and Neonatal Emergency Care and Resuscitation
- Ingestible Capsule Monitors Intestinal Inflammation
- Wireless Implantable Sensor Enables Continuous Endoleak Monitoring
- Pulse Oximeter Index Offers Non-Invasive Guides for Fluid Therapy
- Wearable Patch for Early Skin Cancer Detection to Reduce Unnecessary Biopsies
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries

- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
Channels
Surgical Techniques
view channel
Robotic Assistant Delivers Ultra-Precision Injections with Rapid Setup Times
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, affecting nearly 200 million people, a figure expected to rise to 280 million by 2040. Current treatment involves doctors... Read more
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







