HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Activated Gold Particles Help Ablate Prostate Tumors

By HospiMedica International staff writers
Posted on 09 Sep 2019
Image: GSNs scintillating under NIR laser light (Photo courtesy of Nanospectra Biosciences).
Image: GSNs scintillating under NIR laser light (Photo courtesy of Nanospectra Biosciences).
Gold-silica nanoshell (GSN) particles that absorb near-infrared light (NIR) can induce photothermal ablation of prostate cancer, claims a new study.

Researchers at Nanospectra Biosciences (Nanospectra; Houston, TX, USA), the Icahn School of Medicine at Mount Sinai (New York, NY, USA), Rice University (Rice, Houston, TX, USA), and other institutions conducted a clinical trial to examine the use of ultrafocal photothermal ablation for cancerous tumors. For the study, they used the Nanospectra AuroLase Therapy system, a focal ablation modality that relies on laser excitation of GSN to selectively target and treat focal lesions.

The GSN particles were designed to absorb NIR at wavelengths of high tissue transparency, providing highly localized treatment of prostate cancer with substantially reduced risks of deleterious treatment-related side effects. The study included 16 men (58-79 years of age) diagnosed with low or intermediate risk localized prostate cancer. All were given intravenous (IV) GSN nanoparticles, underwent treatment, and had a multiparametric MRI of the prostate at 48-72 hours. Targeted fusion biopsies were taken at 3 and 12 months, and finally a 12 core systematic biopsy was done one year after therapy.

The results revealed that GSN-mediated focal laser ablation was successful in 87.5% of lesions treated at one year of follow-up. The treatment protocol was found to be safe and feasible, and did not affect the genitourinary system of the patients. In addition, the patients’ quality of life (QOL) was preserved by reducing unwanted side effects, including erectile dysfunction and/or urine leakage, and there were no serious complications. The study was published on August 26, 2019, in Proceedings of National Academy of Science (PNAS).

Intravenously delivered GSNs preferentially accumulate within solid tumor tissue due to vessel wall fenestrations associated with aberrant tumor neovasculature and inherently defective lymphatic drainage within these lesions. On illumination with a NIR laser at subablative power, healthy tissue with lower concentrations of GSN suffers mild and reversible hyperthermia, while the higher concentrations of GSN within the cancerous lesion generate sufficient photothermal energy to produce coagulative necrosis.

Related Links:
Nanospectra Biosciences
Icahn School of Medicine at Mount Sinai
Rice University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
ow Frequency Pulse Massager
ET10 L
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more