HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Finite Element Analysis Helps Predict Spinal Fractures

By HospiMedica International staff writers
Posted on 01 Jan 2020
Image:  Finite analysis can help determine cervical bone strength (Photo courtesy of SUTD)
Image: Finite analysis can help determine cervical bone strength (Photo courtesy of SUTD)
A new study introduces a novel vertebral strength assessment tool that can assist accurate prediction of osteoporotic vertebral fracture (OVF) risk.

Developed at the Singapore University of Technology and Design (SUTD) and Munich Technical University (TUM; Germany), the semi-automatic computational tool is designed to extract structural information, such as failure load, from radiological scans of patients using functional spinal units (FSUs). The calculated FSU predicted failure load was compared to the bone mineral density (BMD) values of the single central vertebra with experimentally measured failure load in order to assess finite element (FE) correlation.

To do so, the FSUs underwent clinical multi-detector computed tomography (MDCT), and BMD was then determined for the FSUs from the MDCT images of the central vertebrae. FE-predicted failure load was then calculated in the single central vertebra alone, and the entire FSUs. The results revealed that while BMD of the central vertebrae correlated significantly with experimentally measured failure load, the FE-predicted failure load of the central vertebra showed no significant correlation. However, FE-predicted failure load of the FSUs best predicted experimentally measured failure load. The study was published on December 10, 2019, in Spine.

“There is an urgent need to implement computational biomechanical analysis in the clinical scenario, since it is a powerful tool for non-invasive evaluation of bone strength,” said senior author Subburaj Karupppasamy, PhD, of the SUTD Medical Engineering and Design (MED) laboratory. “Accordingly, this work lays the foundation towards extracting valuable structural information from improved spine models, such as FSUs, in the diagnosis of osteoporosis and prediction of OVFs.”

Computational prediction of failure load through numerical simulation, known popularly as FE analysis, is a non-invasive tool for examination of the spine, which also provides a holistic quantitative evaluation of bone strength. As the spine consists of many different spinal segments, it is essential to include these all load-bearing segments when considering the structural strength of spine. FSUs have the advantage of mimicking the biomechanical requirements of the spine better than each isolated vertebral segment.

Related Links:
Singapore University of Technology and Design
Munich Technical University


Gold Member
CPAP Ventilator
Somnus DM18
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mammo DR Retrofit Solution
DR Retrofit Mammography
Mobile X-Ray System
K4W

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more