Artificial Intelligence Can Detect Glucose Levels via ECG
By HospiMedica International staff writers Posted on 20 Jan 2020 |

Image: ECG heartbeat segments help identify hypoglycemia events (Photo courtesy of University of Warwick)
A new study shows how artificial intelligence (AI) can be used to detect hypoglycemic events from raw electrocardiogram (ECG) signals.
Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.
The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.
“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”
Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.
Related Links:
University of Warwick
University of Napoli Federico II
Western University
Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.
The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.
“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”
Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.
Related Links:
University of Warwick
University of Napoli Federico II
Western University
Latest Critical Care News
- New Prostate Screening Device Could Replace Traditional Examination Method
- Adaptive Spine Board to Revolutionize ER Transport
- Mapping Communication Between Internal Organs to Enable Earlier Illness Diagnosis
- Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
Channels
Critical Care
view channel
New Prostate Screening Device Could Replace Traditional Examination Method
Prostate cancer is a leading health concern, with one in seven men being diagnosed with the disease. Early detection is critical for improving patient outcomes, but traditional diagnostic methods, such... Read more
Adaptive Spine Board to Revolutionize ER Transport
Prolonged immobilization during transport, such as in combat zones or emergency rescues, poses a life-threatening risk for patients, particularly from pressure injuries. Pressure injuries, also known as... Read moreSurgical Techniques
view channel
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read more
New Surgical Microscope Offers Precise 3D Imaging Using 48 Tiny Cameras
Surgeons have long relied on stereoscopic microscopes to gain depth perception during delicate procedures, but this method has limitations. While these microscopes provide a sense of three-dimensionality,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more