Artificial Intelligence Can Detect Glucose Levels via ECG
|
By HospiMedica International staff writers Posted on 20 Jan 2020 |

Image: ECG heartbeat segments help identify hypoglycemia events (Photo courtesy of University of Warwick)
A new study shows how artificial intelligence (AI) can be used to detect hypoglycemic events from raw electrocardiogram (ECG) signals.
Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.
The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.
“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”
Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.
Related Links:
University of Warwick
University of Napoli Federico II
Western University
Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.
The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.
“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”
Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.
Related Links:
University of Warwick
University of Napoli Federico II
Western University
Latest Critical Care News
- Ultrasound Controlled Artificial Muscles Pave Way for Soft Robots
- AI-Powered Alerts Reduce Kidney Complications After Heart Surgery
- Algorithm Predicts and Lengthens Pacemaker Battery Life
- Novel Pill Could Mimic Health Benefits of Bariatric Surgery
- AI Models Identify Patient Groups at Risk of Being Mistreated in Hospital ED
- CPR Guidelines Updated for Pediatric and Neonatal Emergency Care and Resuscitation
- Ingestible Capsule Monitors Intestinal Inflammation
- Wireless Implantable Sensor Enables Continuous Endoleak Monitoring
- Pulse Oximeter Index Offers Non-Invasive Guides for Fluid Therapy
- Wearable Patch for Early Skin Cancer Detection to Reduce Unnecessary Biopsies
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries

- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
Channels
Critical Care
view channel
Ultrasound Controlled Artificial Muscles Pave Way for Soft Robots
Creating soft robotic systems that move with biological precision is a major engineering challenge, especially for applications inside the human body where flexibility, delicacy, and wireless control are essential.... Read more
AI-Powered Alerts Reduce Kidney Complications After Heart Surgery
Acute kidney injury (AKI) is one of the most serious complications following heart surgery, raising mortality fivefold and tripling hospital costs. Diagnosis currently depends on declines in urine output... Read moreSurgical Techniques
view channel
Biodegradable Brain Implant Prevents Glioblastoma Recurrence
Preventing glioblastoma from returning after surgery remains one of the greatest challenges in neuro-oncology. Even after tumor removal and radiochemotherapy, this aggressive brain cancer almost always... Read more
Tiny 3D Printer Reconstructs Tissues During Vocal Cord Surgery
Stiff vocal folds are a common complication after vocal cord surgery, affecting how patients speak and recover. Hydrogels can help reduce this risk by supporting tissue healing, but delivering them precisely... Read more
Minimally Invasive Procedure for Aortic Valve Disease Has Similar Outcomes as Surgery
Diagnosing and deciding how best to treat severe aortic valve stenosis is a critical challenge, especially as the number of affected patients grows with age. Clinicians have long relied on open-heart surgery... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







