Artificial Intelligence Can Detect Glucose Levels via ECG
By HospiMedica International staff writers Posted on 20 Jan 2020 |

Image: ECG heartbeat segments help identify hypoglycemia events (Photo courtesy of University of Warwick)
A new study shows how artificial intelligence (AI) can be used to detect hypoglycemic events from raw electrocardiogram (ECG) signals.
Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.
The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.
“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”
Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.
Related Links:
University of Warwick
University of Napoli Federico II
Western University
Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.
The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.
“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”
Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.
Related Links:
University of Warwick
University of Napoli Federico II
Western University
Latest Critical Care News
- New Ultrasound Technique Enables Safer Vein Access in Critically Ill Patient
- CVD Risk Prediction Tool Could Guide Statin Therapy
- Wearables Could Revolutionize Pregnancy Monitoring and Detect Abnormalities
- AI Model Identifies AF Patients Requiring Blood Thinners to Prevent Stroke
- Soft Robot Intubation Device Could Save Lives
- Bee-Sting Inspired Wearable Microneedles to Revolutionize Drug Delivery
- Wearable Smart Patch Runs Tests Using Sweat Instead of Blood
- AI Improves Prediction of CKD Progression to End Stage Renal Disease
- First-Of-Its-Kind Online Tool to Revolutionize Treatment of High Blood Pressure
- Temperature-Sensing Patch Enables Early Breast Cancer Detection
- AI Stethoscope Detects Three Heart Conditions In 15 Seconds
- AI Powered Mini-Camera Predicts Recurrent Heart Attack
- Breakthrough Metamaterial Technology Paves Way for Next-Gen Wearable Devices
- AI Tool Helps Pinpoint Problem Heart Cells in Ventricular Tachycardia
- AI-Enhanced ECG Identifies Patients at Future Risk of Heart Block
- Bee-Stinger-Inspired Microneedle Delivers Drugs, Stimulates Healing and Monitors Wounds
Channels
Critical Care
view channel
CVD Risk Prediction Tool Could Guide Statin Therapy
Cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality, making accurate risk assessment essential for guiding preventive therapy. Existing tools, such as the Pooled Cohort... Read more
New Ultrasound Technique Enables Safer Vein Access in Critically Ill Patient
Cannulation, the insertion of catheters into major veins near the collarbone, is a common but risky procedure that can cause complications such as pneumothorax or arterial injury. While ultrasound scanning... Read moreSurgical Techniques
view channel
Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next
Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more
World’s First Custom Anterior Cervical Spine Surgery Performed Using Personalized Implant
Anterior cervical fusion has been performed since the 1950s and is one of the most common spine procedures. Traditional implants are designed as one-size-fits-all, which can affect spinal alignment, healing,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more