We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Artificial Intelligence Can Detect Glucose Levels via ECG

By HospiMedica International staff writers
Posted on 20 Jan 2020
Image: ECG heartbeat segments help identify hypoglycemia events (Photo courtesy of University of Warwick)
Image: ECG heartbeat segments help identify hypoglycemia events (Photo courtesy of University of Warwick)
A new study shows how artificial intelligence (AI) can be used to detect hypoglycemic events from raw electrocardiogram (ECG) signals.

Developed at the University of Warwick (Coventry, United Kingdom), the University of Napoli Federico II (Naples, Italy), Western University (WU; London, Canada), and other institutions, the personalized medicine approach uses AI to automatically detect nocturnal hypoglycemia with just a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices. A visualization method then enables the clinicians to establish which part of the ECG signal is significantly associated with a hypoglycemic event in each individual subject.

The AI model is trained with each subject's own dataset, which is comprised of both ECG and glucose recordings as measured by two sensors worn for a period of 8-14 days. The researchers conducted two pilot studies involving eight healthy volunteers, which found that the average sensitivity and specificity of the AI approach for hypoglycemia detection was about 82%, comparable to current continuous glucose monitoring (CGM) device performance. The study was published on January 13, 2020, in Nature Scientific Reports.

“Fingerpicks are never pleasant, and in some circumstances particularly cumbersome. Our innovation consisted of using AI for automatically detecting hypoglycemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping,” said senior author Leandro Pecchia, PhD, of the University of Warwick School of Engineering. “Our approach enables personalized tuning of detection algorithms and emphasizes how hypoglycemic events affect ECG. Based on this information, clinicians can adapt the therapy to each individual.”

Hypoglycemia can cause pronounced physiological responses as a consequence of autonomic activation, principally of the sympatho-adrenal system, which results in the release of epinephrine (adrenaline). The autonomic stimulus provokes hemodynamic changes in order maintain a supply of glucose to the brain and promote the hepatic production of glucose. Hemodynamic changes associated with hypoglycemia include an increase in heart rate and peripheral systolic blood pressure, a fall in central blood pressure, reduced peripheral arterial resistance, and an increase in myocardial contractility, stroke volume, and cardiac output.

Related Links:
University of Warwick
University of Napoli Federico II
Western University


Gold Member
CPAP Ventilator
Somnus DM18
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Ultrasound Needle Guidance System
SonoSite L25
New
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro

Channels

Surgical Techniques

view channel
Image: The novel approach combining MRI, fluid dynamics, and custom algorithms predicts brain cancer recurrence sites (photo courtesy of AdobeStock)

Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next

Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more