Wearable Radar Sensor Measures Blood Pressure Continuously
By HospiMedica International staff writers Posted on 26 Feb 2020 |

Image: The CWR sensor that attaches to the sternum (Photo courtesy of Monash University)
A new study describes how two clip-on sensors attached to the sternum and earlobe can provide real-time blood pressure results.
Under development at Monash University (Melbourne, Australia), the novel measurement technique is based on radar sensor methodology. Instead of the traditional arm cuff, it uses a small continuous wave radar (CWR) sensor adhered to the sternum, and a photoplethysmogram sensor (PPG) clipped to the left earlobe. Using both sensors, the system measures pulse arrival time (PAT), pre-ejection period (PEP), and pulse transit time (PTT), and calculate continuous systolic blood pressure (SBP) from the data.
The researchers then collected experimental data from 43 subjects (40-65 years of age) in various static postures, as well as in 26 subjects doing six different exercise tasks, such as cycling on a stationary bike. Two mathematical models were then used to calculate SBP from the PTT/PAT data, and compare then to simultaneous sphygmomanometer readings. The results showed that for participants in the posture tasks, the best cumulative error percentage (CEP) was 92.28%, and for those in the exercises group, the best CEP was 82.61%. Additionally, removing PEP from PAT lead to a 9% improvement in results. The study was published on November 27, 2019, in Nature Scientific Reports.
“Clinicians still cannot continuously measure blood pressure during sleep, nor during times of activity such as walking or running. This means people with high, low, or irregular blood pressure can’t get the critical information they need about the state of their health around the clock,” said senior author Mehmet Yuce, PhD, of the department of electrical and computer systems engineering. “A wearable device that can provide comfort and portability while people are going about their daily lives will be a significant development for the health sector in Australia and internationally.”
CWR uses known radiofrequency (RF) energy that is transmitted and then received from any reflecting objects. Any movement of the transmitter, target, or both causes a change in the frequency of the electromagnetic wave, known as the Doppler shift. It is also possible to use CWR to measure range instead of range rate by frequency modulation. By measuring the frequency of the return signal, the time delay between transmission and reception can be measured.
Related Links:
Monash University
Under development at Monash University (Melbourne, Australia), the novel measurement technique is based on radar sensor methodology. Instead of the traditional arm cuff, it uses a small continuous wave radar (CWR) sensor adhered to the sternum, and a photoplethysmogram sensor (PPG) clipped to the left earlobe. Using both sensors, the system measures pulse arrival time (PAT), pre-ejection period (PEP), and pulse transit time (PTT), and calculate continuous systolic blood pressure (SBP) from the data.
The researchers then collected experimental data from 43 subjects (40-65 years of age) in various static postures, as well as in 26 subjects doing six different exercise tasks, such as cycling on a stationary bike. Two mathematical models were then used to calculate SBP from the PTT/PAT data, and compare then to simultaneous sphygmomanometer readings. The results showed that for participants in the posture tasks, the best cumulative error percentage (CEP) was 92.28%, and for those in the exercises group, the best CEP was 82.61%. Additionally, removing PEP from PAT lead to a 9% improvement in results. The study was published on November 27, 2019, in Nature Scientific Reports.
“Clinicians still cannot continuously measure blood pressure during sleep, nor during times of activity such as walking or running. This means people with high, low, or irregular blood pressure can’t get the critical information they need about the state of their health around the clock,” said senior author Mehmet Yuce, PhD, of the department of electrical and computer systems engineering. “A wearable device that can provide comfort and portability while people are going about their daily lives will be a significant development for the health sector in Australia and internationally.”
CWR uses known radiofrequency (RF) energy that is transmitted and then received from any reflecting objects. Any movement of the transmitter, target, or both causes a change in the frequency of the electromagnetic wave, known as the Doppler shift. It is also possible to use CWR to measure range instead of range rate by frequency modulation. By measuring the frequency of the return signal, the time delay between transmission and reception can be measured.
Related Links:
Monash University
Latest Critical Care News
- New Ultrasound Technique Enables Safer Vein Access in Critically Ill Patient
- CVD Risk Prediction Tool Could Guide Statin Therapy
- Wearables Could Revolutionize Pregnancy Monitoring and Detect Abnormalities
- AI Model Identifies AF Patients Requiring Blood Thinners to Prevent Stroke
- Soft Robot Intubation Device Could Save Lives
- Bee-Sting Inspired Wearable Microneedles to Revolutionize Drug Delivery
- Wearable Smart Patch Runs Tests Using Sweat Instead of Blood
- AI Improves Prediction of CKD Progression to End Stage Renal Disease
- First-Of-Its-Kind Online Tool to Revolutionize Treatment of High Blood Pressure
- Temperature-Sensing Patch Enables Early Breast Cancer Detection
- AI Stethoscope Detects Three Heart Conditions In 15 Seconds
- AI Powered Mini-Camera Predicts Recurrent Heart Attack
- Breakthrough Metamaterial Technology Paves Way for Next-Gen Wearable Devices
- AI Tool Helps Pinpoint Problem Heart Cells in Ventricular Tachycardia
- AI-Enhanced ECG Identifies Patients at Future Risk of Heart Block
- Bee-Stinger-Inspired Microneedle Delivers Drugs, Stimulates Healing and Monitors Wounds
Channels
Surgical Techniques
view channel
Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next
Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more
World’s First Custom Anterior Cervical Spine Surgery Performed Using Personalized Implant
Anterior cervical fusion has been performed since the 1950s and is one of the most common spine procedures. Traditional implants are designed as one-size-fits-all, which can affect spinal alignment, healing,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more