Wearable Radar Sensor Measures Blood Pressure Continuously
By HospiMedica International staff writers Posted on 26 Feb 2020 |

Image: The CWR sensor that attaches to the sternum (Photo courtesy of Monash University)
A new study describes how two clip-on sensors attached to the sternum and earlobe can provide real-time blood pressure results.
Under development at Monash University (Melbourne, Australia), the novel measurement technique is based on radar sensor methodology. Instead of the traditional arm cuff, it uses a small continuous wave radar (CWR) sensor adhered to the sternum, and a photoplethysmogram sensor (PPG) clipped to the left earlobe. Using both sensors, the system measures pulse arrival time (PAT), pre-ejection period (PEP), and pulse transit time (PTT), and calculate continuous systolic blood pressure (SBP) from the data.
The researchers then collected experimental data from 43 subjects (40-65 years of age) in various static postures, as well as in 26 subjects doing six different exercise tasks, such as cycling on a stationary bike. Two mathematical models were then used to calculate SBP from the PTT/PAT data, and compare then to simultaneous sphygmomanometer readings. The results showed that for participants in the posture tasks, the best cumulative error percentage (CEP) was 92.28%, and for those in the exercises group, the best CEP was 82.61%. Additionally, removing PEP from PAT lead to a 9% improvement in results. The study was published on November 27, 2019, in Nature Scientific Reports.
“Clinicians still cannot continuously measure blood pressure during sleep, nor during times of activity such as walking or running. This means people with high, low, or irregular blood pressure can’t get the critical information they need about the state of their health around the clock,” said senior author Mehmet Yuce, PhD, of the department of electrical and computer systems engineering. “A wearable device that can provide comfort and portability while people are going about their daily lives will be a significant development for the health sector in Australia and internationally.”
CWR uses known radiofrequency (RF) energy that is transmitted and then received from any reflecting objects. Any movement of the transmitter, target, or both causes a change in the frequency of the electromagnetic wave, known as the Doppler shift. It is also possible to use CWR to measure range instead of range rate by frequency modulation. By measuring the frequency of the return signal, the time delay between transmission and reception can be measured.
Related Links:
Monash University
Under development at Monash University (Melbourne, Australia), the novel measurement technique is based on radar sensor methodology. Instead of the traditional arm cuff, it uses a small continuous wave radar (CWR) sensor adhered to the sternum, and a photoplethysmogram sensor (PPG) clipped to the left earlobe. Using both sensors, the system measures pulse arrival time (PAT), pre-ejection period (PEP), and pulse transit time (PTT), and calculate continuous systolic blood pressure (SBP) from the data.
The researchers then collected experimental data from 43 subjects (40-65 years of age) in various static postures, as well as in 26 subjects doing six different exercise tasks, such as cycling on a stationary bike. Two mathematical models were then used to calculate SBP from the PTT/PAT data, and compare then to simultaneous sphygmomanometer readings. The results showed that for participants in the posture tasks, the best cumulative error percentage (CEP) was 92.28%, and for those in the exercises group, the best CEP was 82.61%. Additionally, removing PEP from PAT lead to a 9% improvement in results. The study was published on November 27, 2019, in Nature Scientific Reports.
“Clinicians still cannot continuously measure blood pressure during sleep, nor during times of activity such as walking or running. This means people with high, low, or irregular blood pressure can’t get the critical information they need about the state of their health around the clock,” said senior author Mehmet Yuce, PhD, of the department of electrical and computer systems engineering. “A wearable device that can provide comfort and portability while people are going about their daily lives will be a significant development for the health sector in Australia and internationally.”
CWR uses known radiofrequency (RF) energy that is transmitted and then received from any reflecting objects. Any movement of the transmitter, target, or both causes a change in the frequency of the electromagnetic wave, known as the Doppler shift. It is also possible to use CWR to measure range instead of range rate by frequency modulation. By measuring the frequency of the return signal, the time delay between transmission and reception can be measured.
Related Links:
Monash University
Latest Critical Care News
- Discovery of Heart’s Hidden Geometry to Revolutionize ECG Interpretation
- New Approach Improves Diagnostic Accuracy for Esophageal Motility Disorders
- Wristband Sensor Provides All-In-One Monitoring for Diabetes and Cardiovascular Care
- Handheld Device Enables Imaging and Treatment of Oral Cancer in Low-Resource Settings
- New Fully Automated AI Algorithm More Effective at Predicting Heart Attack Risk
- First-In-Kind Self-Assembling Collagen Scaffold Advances Wound Care
- AI-Enhanced Echocardiography Improves Early Detection of Amyloid Buildup in Heart
- Consumer Wearables Could Predict Pediatric Surgery Complications
- Wireless Implant Delivers Chemotherapy Deep into Tumors Without Side Effects
- Skin-Like Sensor Monitors Vital Signs and Tracks Healing After Surgery
- Implantable Device Could Save Diabetes Patients from Dangerously Low Blood Sugar
- New Prostate Screening Device Could Replace Traditional Examination Method
- Adaptive Spine Board to Revolutionize ER Transport
- Mapping Communication Between Internal Organs to Enable Earlier Illness Diagnosis
- Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
Channels
Surgical Techniques
view channel
Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery
Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more