Ready-Made Cardiac Patch Repairs Heart Attack Damage
|
By HospiMedica International staff writers Posted on 23 Apr 2020 |

Image: A synthetic cardiac patch boosts recovery of damaged hearts (photo courtesy of NC State University)
A new study describes how a freezable, cell-free, artificial cardiac patch can deliver healing factors directly to the site of myocardial injury.
Developed at the University of North Carolina (UNC; Chapel Hill, USA) and North Carolina State University (NC State; Raleigh, USA), the new off-the-shelf fully acellular artificial cardiac patch (artCP) is composed of a porcine-based decellularized myocardial extracellular matrix (ECM) scaffold and synthetic encapsulated secreted factors retrieved from isolated human cardiac stromal cells. The artCP thus contains all of the therapeutics secreted by the cells, but without live cells that could trigger an immune response.
In a rat model of acute myocardial infarction (MI), subsequent transplantation of the artCP supported cardiac recovery over a three-week period by promoting angiomyogenesis, reducing scarring by 30%, and improving cardiac function by 50%. The safety and efficacy of the artCP were further confirmed in a porcine model of MI. And while cellular-based scaffold patches need to be freshly prepared to maintain cell viability, the artCP can maintain its potency even after long-term cryopreservation. The study was published on April 8, 2020, in Science Translational Medicine.
“We have developed an artificial cardiac patch that can potentially solve the problems associated with using live cells, yet still deliver effective cell therapy to the site of injury. The patch can be frozen and safely stored for at least 30 days,” said senior author Professor Ke Cheng, PhD, of the NC State/UNC Joint Department of Biomedical Engineering. “Since there are no live cells involved, it will not trigger a patient’s immune system to reject it. It is a first step toward a truly off-the-shelf solution to cardiac patch therapy.”
Cell therapy for cardiac remodeling after MI is therapeutic, in part, because of the paracrine effects of factors secreted from human cardiac stromal cells. But low retention and engraftment of transplanted cells can limit potential therapeutic efficacy, while seeding of a scaffold material with cells to create cardiac patches that can be transplanted onto the surface of the heart is a costly, time-consuming procedure, and since they use live cellular material, can increase the risk of tumor formation and arrhythmia.
Related Links:
University of North Carolina
North Carolina State University
Developed at the University of North Carolina (UNC; Chapel Hill, USA) and North Carolina State University (NC State; Raleigh, USA), the new off-the-shelf fully acellular artificial cardiac patch (artCP) is composed of a porcine-based decellularized myocardial extracellular matrix (ECM) scaffold and synthetic encapsulated secreted factors retrieved from isolated human cardiac stromal cells. The artCP thus contains all of the therapeutics secreted by the cells, but without live cells that could trigger an immune response.
In a rat model of acute myocardial infarction (MI), subsequent transplantation of the artCP supported cardiac recovery over a three-week period by promoting angiomyogenesis, reducing scarring by 30%, and improving cardiac function by 50%. The safety and efficacy of the artCP were further confirmed in a porcine model of MI. And while cellular-based scaffold patches need to be freshly prepared to maintain cell viability, the artCP can maintain its potency even after long-term cryopreservation. The study was published on April 8, 2020, in Science Translational Medicine.
“We have developed an artificial cardiac patch that can potentially solve the problems associated with using live cells, yet still deliver effective cell therapy to the site of injury. The patch can be frozen and safely stored for at least 30 days,” said senior author Professor Ke Cheng, PhD, of the NC State/UNC Joint Department of Biomedical Engineering. “Since there are no live cells involved, it will not trigger a patient’s immune system to reject it. It is a first step toward a truly off-the-shelf solution to cardiac patch therapy.”
Cell therapy for cardiac remodeling after MI is therapeutic, in part, because of the paracrine effects of factors secreted from human cardiac stromal cells. But low retention and engraftment of transplanted cells can limit potential therapeutic efficacy, while seeding of a scaffold material with cells to create cardiac patches that can be transplanted onto the surface of the heart is a costly, time-consuming procedure, and since they use live cellular material, can increase the risk of tumor formation and arrhythmia.
Related Links:
University of North Carolina
North Carolina State University
Latest Surgical Techniques News
- Robotic Assistant Delivers Ultra-Precision Injections with Rapid Setup Times
- Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
- Novel Glue Prevents Complications After Breast Cancer Surgery
- Breakthrough Brain Implant Enables Safer and More Precise Drug Delivery
- Bioadhesive Sponge Stops Uncontrolled Internal Bleeding During Surgery
- Revolutionary Nano Bone Material to Accelerate Surgery and Healing
- Superior Orthopedic Implants Combat Infections and Quicken Healing After Surgery
- Laser-Based Technique Eliminates Pancreatic Tumors While Protecting Healthy Tissue
- Surgical Treatment of Severe Carotid Artery Stenosis Benefits Blood-Brain Barrier
- Revolutionary Reusable Duodenoscope Introduces 68-Minute Sterilization
- World's First Transcatheter Smart Implant Monitors and Treats Congestion in Heart Failure
- Hybrid Endoscope Marks Breakthrough in Surgical Visualization
- Robot-Assisted Bronchoscope Diagnoses Tiniest and Hardest to Reach Lung Tumors
- Diamond-Titanium Device Paves Way for Smart Implants that Warn of Disease Progression
- 3D Printable Bio-Active Glass Could Serve as Bone Replacement Material
- Spider-Inspired Magnetic Soft Robots to Perform Minimally Invasive GI Tract Procedures
Channels
Critical Care
view channel
Ingestible Capsule Monitors Intestinal Inflammation
Acute mesenteric ischemia—a life-threatening condition caused by blocked blood flow to the intestines—remains difficult to diagnose early because its symptoms often mimic common digestive problems.... Read more
Wireless Implantable Sensor Enables Continuous Endoleak Monitoring
Endovascular aneurysm repair (EVAR) is a life-saving, minimally invasive treatment for abdominal aortic aneurysms—balloon-like bulges in the aorta that can rupture with fatal consequences.... Read more
Wearable Patch for Early Skin Cancer Detection to Reduce Unnecessary Biopsies
Skin cancer remains one of the most dangerous and common cancers worldwide, with early detection crucial for improving survival rates. Traditional diagnostic methods—visual inspections, imaging, and biopsies—can... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







