Patient Specific Talus Spacer Treats Avascular Necrosis
By HospiMedica International staff writers Posted on 04 Mar 2021 |

Image: The 3D printed Patient Specific Talus Spacer (Photo courtesy of Additive Orthopaedics)
An additively manufactured patient specific implant allows patients suffering from avascular necrosis (AVN) to regain motion and reduce pain in the ankle.
The Additive Orthopaedics (Little Silver, NJ, USA) Patient Specific Talus Spacer is a three dimension (3D) printed implant that is designed to provide a joint-sparing alternative to other surgical interventions commonly used in late-stage AVN that may disable motion of the ankle joint. Constructed of a porous lattice structure in order to support bony in-growth, the advanced talus implant includes complex geometries that lead to enhanced osteointegration, which are not possible with traditional manufacturing processes.
The Patient Specific Talus Spacer is 3D printed for each patient individually, modeled from a computed tomography (CT) scan, and is fitted to the patient's specific anatomy. During the replacement surgery, the patient's talus bone is removed and replaced with the implant, which is made from cobalt chromium alloy. While fusion may become necessary in the future (should the condition worsen), the Additive Orthopaedics Talus Spacer provides a joint-sparing procedure, as it allows the patient to retain motion in the ankle joint.
“Avascular necrosis of the talus is extremely painful and debilitating for these patients. The Patient Specific Talus Spacer is another example of how 3D printed devices can improve the standard of care,” said Greg Kowalczyk, President of Additive Orthopaedics. “Surgical treatment options are below-the-knee amputation or joint fusion, which results in loss of motion of the ankle, and can have poor outcomes.”
AVN of the ankle joint is a serious and progressive condition that causes death of bone tissue stemming from a lack of blood supply to the area. It is often caused by a sudden injury--such as a broken bone or a dislocated joint--or sustained damage to the tissue that develops over time, causing the damaged bone to turn necrotic. When a joint is affected, such as the ankle, the cartilage also deteriorates, leading to arthritis and pain. Late-stage AVN of the ankle may result in the talus partially or fully collapsing.
Related Links:
Additive Orthopaedics
The Additive Orthopaedics (Little Silver, NJ, USA) Patient Specific Talus Spacer is a three dimension (3D) printed implant that is designed to provide a joint-sparing alternative to other surgical interventions commonly used in late-stage AVN that may disable motion of the ankle joint. Constructed of a porous lattice structure in order to support bony in-growth, the advanced talus implant includes complex geometries that lead to enhanced osteointegration, which are not possible with traditional manufacturing processes.
The Patient Specific Talus Spacer is 3D printed for each patient individually, modeled from a computed tomography (CT) scan, and is fitted to the patient's specific anatomy. During the replacement surgery, the patient's talus bone is removed and replaced with the implant, which is made from cobalt chromium alloy. While fusion may become necessary in the future (should the condition worsen), the Additive Orthopaedics Talus Spacer provides a joint-sparing procedure, as it allows the patient to retain motion in the ankle joint.
“Avascular necrosis of the talus is extremely painful and debilitating for these patients. The Patient Specific Talus Spacer is another example of how 3D printed devices can improve the standard of care,” said Greg Kowalczyk, President of Additive Orthopaedics. “Surgical treatment options are below-the-knee amputation or joint fusion, which results in loss of motion of the ankle, and can have poor outcomes.”
AVN of the ankle joint is a serious and progressive condition that causes death of bone tissue stemming from a lack of blood supply to the area. It is often caused by a sudden injury--such as a broken bone or a dislocated joint--or sustained damage to the tissue that develops over time, causing the damaged bone to turn necrotic. When a joint is affected, such as the ankle, the cartilage also deteriorates, leading to arthritis and pain. Late-stage AVN of the ankle may result in the talus partially or fully collapsing.
Related Links:
Additive Orthopaedics
Latest Surgical Techniques News
- New Surgical Microscope Offers Precise 3D Imaging Using 48 Tiny Cameras
- First-Of-Its-Kind Drug Illuminates Nerve Tissue for Faster and Safer Surgery
- Neuroform Atlas Stent-Assisted Coiling Found Effective Even in Smaller Arteries
- New Surgical Technique Safely Removes Giant Nerve Tumors
- Breakthrough Polymer Significantly Improves Safety of Implantable Medical Devices
- First-Ever Technology Makes Blood Translucent During Surgery
- Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
- New Imaging Probe to Transform Brain Cancer Surgery
- New Technology More Than Doubles Success Rate for Blood Clot Removal
- Surgical Ablation During CABG Improves Survival in Patients with Preexisting Atrial Fibrillation
- New Battery Technology Delivers Additional Power to Implantable Medical Devices
- New Model Reveals Optimal Positioning of Orthopedic Screws in Fractures
- Non-Invasive Tool for Removing Lung Cancer Tumors Reduces Surgical Trauma
- Advanced Imaging Endoscopes to Revolutionize Detection and Treatment of Gastrointestinal Disorders
- Novel Mechanical Heart Valve Improves Blood Flow and Lowers Risk of Blood Clots
- First-of-Its-Kind Device Replaces Mitral Valve Without Open-Heart Surgery
Channels
Critical Care
view channel
Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
Chronic wounds, especially those caused by diabetes or circulatory disorders, are a widespread medical problem that burden healthcare systems. Patients often suffer from open skin lesions that fail to... Read more
Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
Hypertension affects nearly half of all adults in the U.S. and remains the leading cause of cardiovascular disease. Regular and accurate blood pressure monitoring is essential for managing this condition,... Read more
New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
Barrett’s esophagus is a condition in which the lining of the esophagus—normally composed of squamous epithelial cells—undergoes a transformation into cells resembling those found in the stomach or intestine.... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more