We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Microindentation Device Measures Bone Health

By HospiMedica International staff writers
Posted on 14 Dec 2021
Image: The OsteoProbe handheld bone measurement tool (Photo courtesy of Active Life Scientific)
Image: The OsteoProbe handheld bone measurement tool (Photo courtesy of Active Life Scientific)
A novel testing tool physically interacts with bone tissue at the microscopic level, quantifying bone health using a measurable score.

The Active Life Scientific (ALSI; Santa Barbara, CA, USA) OsteoProbe is a handheld tool that uses reference point indentation (RPI) technology in order to investigate bone’s ability to resist puncture. The output is the bone material strength index (BMSi), the ratio between the indentation distance in bone versus a polymathylmethacrylate (PMMA) reference. The BMSi score represents bone properties that resist the separation of mineralized collagen fibrils. Patient bone scores fall between 45 (low) to 105 (high).

“There's a difference between how much bone you have, or density, and how good your bone tissue is. Most patients who suffer a fracture due to fragile bones do not have osteoporotic bone density,” said Professor Paul Hansma, PhD, who invented the technology behind the OsteoProbe. “The Bone Score test quantifies how bone tissue resists a physical challenge, on a safe, microscopic level, and provides previously unavailable data for physicians to consider when investigating the quality of a patient's bone.”

“It's been decades since a new measurement method was introduced to the field of osteoporosis, as DEXA and ultrasound technologies have been widely used since the 1990s. New clinical tools are desperately needed to understand the health of our bones,” said Peter Burks, CEO of ALSI. “Many diseases have a library of measurement tools available, but bone health management remains mostly limited to radiation-based imaging technologies. Physical interaction with bone tissue unlocks a previously unavailable data stream for physicians to consider when evaluating their patients.”

RPI testing is based on the Mohs scale of mineral hardness, in which materials are ranked according to what they can scratch and are, in turn, scratched by. During the course of indentation, a record of the depth of penetration is made, and then the area of the indent is determined using the known geometry of the indentation tip. These values can be plotted to create a load-displacement curve, which can be used to extract more sophisticated mechanical properties of the material.

Related Links:
Active Life Scientific

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
VTE Prevention System
Flowtron ACS900
New
Absorbable Monofilament Mesh
Phasix Mesh

Channels

Surgical Techniques

view channel
Image: For the first time, a fluorescent-guided nerve imaging agent has shown promise for use in humans (Photo courtesy of VUMC)

Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery

Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more