Bioelectronic Sutures Monitor Deep Surgical Wounds
By HospiMedica International staff writers Posted on 17 Jan 2022 |

Image: Smart surgical sutures with an attached electronic RFID monitoring module (Photo courtesy of NUS)
Battery-free, wireless smart sutures can promote healing and monitor wound integrity, gastric leakage, and tissue micro-motion at the same time, claims a new study.
Developed at National University of Singapore (NUS; Singapore), the new sutures have three key components: a medical-grade multifilament silk suture coated with a conductive polymer to allow it to respond to wireless signals; a battery-free electronic capacitive sensor; and an external wireless reader used to communicate with the suture. During stitching of the wound, the insulating section of the suture is threaded through the electronic module and secured by applying medical silicone to the electrical contacts.
The entire surgical stitch functions as a radio-frequency identification (RFID) tag that can be read by an external reader. The smart sutures can be read up to a depth of 50 mm, depending on the length of stitches involved, and are also able to alert clinicians if they are broken or unraveled, for example by dehiscence of the wound. Similar to existing sutures, clips, and staples, the smart sutures can be removed post-operatively via a minimally invasive procedure when risk of complications has passed. The study was published in the December 2021 issue of Nature Biomedical Engineering.
“Currently, post-operative complications are often not detected until the patient experiences systemic symptoms like pain, fever, or a high heart rate,” said senior author John Ho, PhD, of the NUS department of Electrical and Computer Engineering. “These smart sutures can be used as an early alert tool to enable doctors to intervene before the complication becomes life-threatening, which can lead to lower rates of re-operation, faster recovery, and improved patient outcomes.”
Related Links:
National University of Singapore
Developed at National University of Singapore (NUS; Singapore), the new sutures have three key components: a medical-grade multifilament silk suture coated with a conductive polymer to allow it to respond to wireless signals; a battery-free electronic capacitive sensor; and an external wireless reader used to communicate with the suture. During stitching of the wound, the insulating section of the suture is threaded through the electronic module and secured by applying medical silicone to the electrical contacts.
The entire surgical stitch functions as a radio-frequency identification (RFID) tag that can be read by an external reader. The smart sutures can be read up to a depth of 50 mm, depending on the length of stitches involved, and are also able to alert clinicians if they are broken or unraveled, for example by dehiscence of the wound. Similar to existing sutures, clips, and staples, the smart sutures can be removed post-operatively via a minimally invasive procedure when risk of complications has passed. The study was published in the December 2021 issue of Nature Biomedical Engineering.
“Currently, post-operative complications are often not detected until the patient experiences systemic symptoms like pain, fever, or a high heart rate,” said senior author John Ho, PhD, of the NUS department of Electrical and Computer Engineering. “These smart sutures can be used as an early alert tool to enable doctors to intervene before the complication becomes life-threatening, which can lead to lower rates of re-operation, faster recovery, and improved patient outcomes.”
Related Links:
National University of Singapore
Latest Critical Care News
- Wireless Implant Delivers Chemotherapy Deep into Tumors Without Side Effects
- Skin-Like Sensor Monitors Vital Signs and Tracks Healing After Surgery
- Implantable Device Could Save Diabetes Patients from Dangerously Low Blood Sugar
- New Prostate Screening Device Could Replace Traditional Examination Method
- Adaptive Spine Board to Revolutionize ER Transport
- Mapping Communication Between Internal Organs to Enable Earlier Illness Diagnosis
- Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
Channels
Surgical Techniques
view channel
Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery
Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more