We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

CT Lung Imaging Combined with Machine Learning Predicts Further COPD Care

By HospiMedica International staff writers
Posted on 24 Jun 2022
Image: Quantitative CT lung imaging and ML improves prediction of ED visits and hospitalizations in COPD (Photo courtesy of Pexels)
Image: Quantitative CT lung imaging and ML improves prediction of ED visits and hospitalizations in COPD (Photo courtesy of Pexels)

Healthcare utilization in chronic obstructive pulmonary disease (COPD) patients is a growing concern. Patients with COPD are more likely to utilize healthcare services, have higher rates of hospitalizations and hospital readmissions, and higher rates of mortality. Hence, predicting increased risk of future healthcare utilization in COPD patients is important for improving patient management. Now, a new study has found that healthcare utilization could potentially be predicted in mild COPD patients using computed tomography (CT) lung imaging and machine learning.

The study by researchers at the Toronto Metropolitan University (Toronto, ON, Canada) aimed to determine the importance of CT lung imaging measurements relative to other demographic and clinical measurements for predicting future health services use with machine learning in COPD. In the retrospective study, the researchers evaluated lung function measurements and chest CT images of 527 COPD participants from 2010 to 2017. Up to two follow-up visits (1.5- and 3-year follow-up) were performed and participants were asked for details related to healthcare utilization. Healthcare utilization was defined as any COPD hospitalization or emergency room visit due to respiratory problems in the 12 months prior to the follow-up visits.

The researchers found that out of the 527 COPD participants evaluated, 179 (35%) used healthcare services at follow-up. There were no significant differences between the participants with or without healthcare utilization at follow-up for age, sex, BMI or pack-years. The accuracy for predicting subsequent healthcare utilization was 80% when all measurements were considered, 76% for CT measurements alone and 65% for demographic and lung function measurements alone. Based on these findings, the researchers concluded that a combination of CT lung imaging and conventional measurements leads to greater prediction accuracy of subsequent health services use than conventional measurements alone, and may provide needed prognostic information for patients suffering from COPD.

Related Links:
Toronto Metropolitan University 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Bipolar Coagulation Generator
Aesculap
New
Emergency Ventilator
Shangrila935

Channels

Surgical Techniques

view channel
Image: The novel approach combining MRI, fluid dynamics, and custom algorithms predicts brain cancer recurrence sites (photo courtesy of AdobeStock)

Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next

Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more