HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Chip Technology Paves Way for Tiny Wearable Devices to Detect and Measure Biomarkers

By HospiMedica International staff writers
Posted on 23 Sep 2022
Image: Size comparison of the new mTP laser array (Photo courtesy of Rockley)
Image: Size comparison of the new mTP laser array (Photo courtesy of Rockley)

Scientists have developed what is believed to be the world’s first micro-transfer-printed (mTP) silicon-photonics-based laser for commercial applications. This groundbreaking achievement by Rockley Photonics Holdings Limited (Oxford, UK) is expected to allow the company to further increase the density and reduce the size of its high-density spectrophotometer chips - which are already the world’s smallest for broadband infrared wavelength laser spectrometry (covering 1000 nanometers of spectrum) and are smaller in area than LED-based solutions currently used in wearables. New silicon-photonics-based biosensing chips using mTP technology are expected to be available in the first half of 2024. This advancement could potentially have a significant impact across a wide range of applications, including the design of exceptionally small wearable devices for the detection and measurement of multiple biomarkers.

With this breakthrough in the mTP of silicon-photonics-based lasers, Rockley has dramatically increased the laser density of its photonics integrated circuits (PICs) for biosensing, creating what it believes to be the world’s highest-density broad-wavelength laser spectrophotometer chip, surpassing its own previous achievements. Moreover, the mTP process is expected to reduce manufacturing costs and enable thinner, smaller footprint and higher-density chip designs. These attributes are powerful benefits for use in consumer and medtech devices and could facilitate the integration of Rockley’s biosensing technology into future tiny wearables. Leveraging the mTP process, the new PIC technology will integrate a laser-generating “membrane” with a thickness of only 4 microns. The potential applications for this higher-density and smaller-footprint chip technology extend beyond biosensing and health monitoring into other areas, such as ultra-small wearables, clothing, or XR/VR/AR headsets and glasses.

“Applying the micro-transfer printing process to the production of integrated lasers is a huge breakthrough that we believe will have a tremendous impact on wearable biosensing and on the photonics industry as a whole,” said Dr. Andrew Rickman, chairman and chief executive officer of Rockley. “We arguably have some of the most sophisticated photonics technology in the world, and this unprecedented level of miniaturization raises the bar even further. By creating biosensing chips that are smaller, lower-cost, and more efficient, we can continually improve our wearable biosensing products and deliver novel, relevant, and more powerful ways to monitor our health.”

Related Links:
Rockley Photonics Holdings Limited 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Open Stapler
PROXIMATE Linear Cutter
Emergency Ventilator
Shangrila935

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more