We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

AI-Guided Screening Uses ECG Data to Detect Hidden Risk Factor for Stroke

By HospiMedica International staff writers
Posted on 29 Sep 2022
Image: AI-guided targeted screening strategy could reduce undiagnosed cases of atrial fibrillation (Photo courtesy of Pexels)
Image: AI-guided targeted screening strategy could reduce undiagnosed cases of atrial fibrillation (Photo courtesy of Pexels)

Atrial fibrillation is an irregular heartbeat that can lead to blood clots that may travel to the brain and cause a stroke, but it is largely underdiagnosed. Electrocardiograms (ECGs) are commonly performed for a variety of diagnostics, but since atrial fibrillation can be fleeting, the chance of catching an episode on a single 10-second ECG tracing is low. Patients can undergo continuous or intermittent cardiac monitoring approaches that have higher detection rates, but they are too resource-intensive to apply to everyone and can be burdensome and expensive for patients. Now, researchers using artificial intelligence (AI) to evaluate patients’ ECGs in a targeted strategy to screen for atrial fibrillation found that AI identified new cases that would not have come to clinical attention during routine care.

In the digitally-enabled, decentralized study, researchers at Mayo Clinic (Rochester, MN, USA) enrolled 1,003 patients for continuous monitoring and used another 1,003 patients from usual care as real-world controls. The findings showed that AI can indeed identify a subgroup of high-risk patients who would benefit more from further intensive heart monitoring to detect atrial fibrillation, supporting an AI-guided targeted screening strategy. Earlier research had already developed an AI algorithm to identify patients with a high likelihood of previously unknown atrial fibrillation. The algorithm for detecting atrial fibrillation in normal sinus rhythm from an ECG is licensed to Anumana Inc. (Cambridge, MA, USA) and can identify patients who, even though they are in normal rhythm on the day of the ECG, may have an increased risk of undetected episodes of atrial fibrillation at other times. Such patients can then undergo additional monitoring to confirm the diagnosis.

"We believe that atrial fibrillation screening has great potential, but currently the yield is too low and the cost is too high to make widespread screening a reality," says Peter Noseworthy, M.D., a cardiac electrophysiologist at Mayo Clinic and lead author of the study. "This study demonstrates that an AI-ECG algorithm can help target screening to patients who are most likely to benefit."

"The study shows that an AI algorithm can select a subgroup of older adults who might benefit more from intensive monitoring. If this new strategy is broadly implemented, it could reduce undiagnosed atrial fibrillation, and prevent stroke and death in millions of patients across the globe," added Xiaoxi Yao, Ph.D., a health outcomes researcher in the Department of Cardiovascular Medicine and the Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery and senior author of the study.

Related Links:
Mayo Clinic 
Anumana Inc. 

Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Electric Bed
DIXION Intensive Care Bed
Head Rest
Medifa 61114_3

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more