Diagnostic Wearables Redefining Entire Fields of Medical Monitoring, Finds Global Survey
| By HospiMedica International staff writers Posted on 05 Oct 2022 | 

Diagnostic wearable devices enable individuals and medical providers alike to track and understand health status by providing real-time data. The keys to success for diagnostic wearables include ease of use, affordability and wide market availability – plus, increasing data collection capabilities thanks to advances in sensor electronics integration. Wearables that track heart rate, sleep, and physical activity levels are already widely used for sports and fitness purposes, and now diagnostic wearables are primed to deliver innovation for more challenging wellness and medical applications. From diet tracking to cancer detection – diagnostic wearables represent a world of opportunity. However, the path to bringing these products to market is not without its challenges.
A global survey called “Diagnostic Wearables: The Future of Medical Monitoring,” by Molex (Lisle, IL, USA), a global electronics company, explored the market drivers and issues impacting a new generation of diagnostic wearables, including the tradeoffs design engineers in this game-changing field must face – from form factors and battery considerations to data collection and management. The survey queried 600 design engineers and engineering managers across the world who are working in organizations developing wearable diagnostic solutions and who broadly agreed that the technology is ready and barriers to innovation can be overcome - it’s just a matter of time.
According to the survey findings, patients are predominately driving the demand for wearable diagnostics, followed by first-line personnel such as doctors, technicians, and home care providers who are key supporters of new wearable products. Design engineers expect consumer use to increase in the next five years, but the perceived need for medical supervision is significant. Less than half of most categories are expected to be available to all consumers without medical supervision. The potential applications for medical wearables are extensive. Design engineers expect to see a wide range of new types available for consumer use in the next five years.
Tech companies and medical device startups are expected to lead wearable diagnostic innovation in the next five years. In general, design engineering now has an array of technologies (materials, sensors, data communication, and power management) that are mature enough to deploy for a long list of health conditions. The barrier of widespread adoption seems to lie in placing these capabilities in a single package that all stakeholders will find acceptable.
99.7% of respondents reported that wearable diagnostics have additional design challenges, with issues related to ease of use and user interface cited most often, followed by issues around power consumption and battery. Cost topped the charts as the biggest challenge when designing wearable diagnostics. Sensors and connectors topped the list as the most challenging aspects of miniaturization of wearable diagnostics.
Design engineers largely saw a need for improvement in materials for wearable diagnostics. There was broad agreement that innovation is needed, with over 60% of engineers highlighting the need for hardware innovation. Design engineers believe in harvesting patient energy (i.e. body heat, sweat, heart beat) to power wearable diagnostics predict it will take time. Movement was considered the most likely source of energy harvesting. 80% of respondents reported that COVID had resulted in changing attitudes towards medical devices in non-clinical settings.
Amidst the strong demand for wearable diagnostics, roughly half of those surveyed saw tech companies and medical device startups as the future leaders in this space. However, nearly two-thirds of respondents reported that collaboration across groups is critical for innovation. This suggests a strong need for partnership between non-traditional healthcare players (e.g., tech companies and startups) and those with established expertise.
Related Links:
Molex 
Latest Business News
- Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
- B. Braun Acquires Digital Microsurgery Company True Digital Surgery
- CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
- Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
- Medtronic Partners with Corsano to Expand Acute Care & Monitoring Portfolio in Europe
- Expanded Collaboration to Transform OR Technology Through AI and Automation
- Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
- Boston Scientific Acquires Medical Device Company SoniVie
- 2026 World Hospital Congress to be Held in Seoul
- Teleflex to Acquire BIOTRONIK’s Vascular Intervention Business
- Philips and Mass General Brigham Collaborate on Improving Patient Care with Live AI-Powered Insights
- Arab Health 2025 Celebrates Landmark 50th Edition
- Boston Scientific Acquires Medical Device Company Intera Oncology
- MEDICA 2024 to Highlight Hot Topics of MedTech Industry
- Start-Ups To Once Again Play Starring Role at MEDICA 2024
- Boston Scientific to Acquire AFib Ablation Company Cortex
Channels
Critical Care
view channel 
                    Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
Monitoring blood flow in the brain is crucial for diagnosing and treating neurological conditions such as stroke, traumatic brain injury (TBI), and vascular dementia. However, current imaging methods like... Read more 
                    AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
For decades, doctors have relied on standardized scoring systems to assess patients with the most common type of heart attack—non-ST-elevation acute coronary syndrome (NSTE-ACS). The GRACE score, used... Read moreSurgical Techniques
view channel 
                    Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more 
                    Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel 
                    Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more 
                    VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more 
                    Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more 
                    First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel 
                    















 
								

 
								
 
								 
                     
                     
                     
                     
                    