Innovative Light-Triggered Coating for Medical Devices Fights Bacterial Infections
| By HospiMedica International staff writers Posted on 03 Nov 2022 | 

Biofilms are the colonies of bacteria that grow on the surface of medical devices, such as catheters, implants, and wound meshes, and correlate with nosocomial infections. Bacterial biofilms on medical devices may result in infections and pose a serious threat to public health and economy, causing worldwide morbidity. Now, a team of researchers has developed a durable coating for medical devices which is activated by light, providing on-demand disinfection. The functional light-triggered coating for medical devices is very durable (stays there and retains its properties) and can destroy bacterial biofilms. The potential applications are for such coatings to be employed on medical devices that are often colonized by bacteria, such as catheters, endotracheal tubes, and wound dressings/meshes.
Light-triggered photocatalytic coatings destroy biofilms on-demand, but the challenge so far has been two-fold: first it is difficult to find materials that are activated by white light (and not harmful UV light) and second, to have them stable on medical devices and retain the activity over several cycles. Researchers at the Karolinska Institutet (Stockholm, Sweden) tackled both of these major challenges by producing materials that can be activated with white light and also inventing a new method to make these coatings highly durable, enabling them useful in repeated treatments.
The researchers produced the photocatalytic nanoparticle coating by a highly versatile nanomanufacturing technology, flame aerosol synthesis, and deposited them as porous films on the surface of the medical device. The researchers then went on to infuse the porous nanoparticle film with silicone (a polymer often used in medical devices) with a precise thickness, thereby dramatically increasing the durability of the produced coating. The researchers grew bacterial biofilms on the medical device - mimicking surfaces. The devices were then briefly irradiated for 15-90 minutes with white light which resulted in the on-demand biofilm destruction.
Biofilm infections tantalize several patients and the innovation here could mitigate this global health challenge by reducing such infections. Especially when such infections occur in immunocompromised patients, the clinical benefit is very high. The researchers have filed a patent application for their invention and are now further developing the product to assist in its rapid translation to clinics. Their next steps will be to develop this technology further as a coating on existing medical devices such as catheters, endotracheal tubes, and wound meshes/dressings, to name a few examples.
Related Links:
Karolinska Institutet
Latest Surgical Techniques News
- Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
- Novel Glue Prevents Complications After Breast Cancer Surgery
- Breakthrough Brain Implant Enables Safer and More Precise Drug Delivery
- Bioadhesive Sponge Stops Uncontrolled Internal Bleeding During Surgery
- Revolutionary Nano Bone Material to Accelerate Surgery and Healing
- Superior Orthopedic Implants Combat Infections and Quicken Healing After Surgery
- Laser-Based Technique Eliminates Pancreatic Tumors While Protecting Healthy Tissue
- Surgical Treatment of Severe Carotid Artery Stenosis Benefits Blood-Brain Barrier
- Revolutionary Reusable Duodenoscope Introduces 68-Minute Sterilization
- World's First Transcatheter Smart Implant Monitors and Treats Congestion in Heart Failure
- Hybrid Endoscope Marks Breakthrough in Surgical Visualization
- Robot-Assisted Bronchoscope Diagnoses Tiniest and Hardest to Reach Lung Tumors
- Diamond-Titanium Device Paves Way for Smart Implants that Warn of Disease Progression
- 3D Printable Bio-Active Glass Could Serve as Bone Replacement Material
- Spider-Inspired Magnetic Soft Robots to Perform Minimally Invasive GI Tract Procedures
- Micro Imaging Device Paired with Endoscope Spots Cancers at Earlier Stage
Channels
Critical Care
view channel 
                    Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
Monitoring blood flow in the brain is crucial for diagnosing and treating neurological conditions such as stroke, traumatic brain injury (TBI), and vascular dementia. However, current imaging methods like... Read more 
                    AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
For decades, doctors have relied on standardized scoring systems to assess patients with the most common type of heart attack—non-ST-elevation acute coronary syndrome (NSTE-ACS). The GRACE score, used... Read morePatient Care
view channel 
                    Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more 
                    VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more 
                    Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more 
                    First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel 
                    Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel 
                    Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more 
                    B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more 
                    CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more 
                    















 
								

 
								
 
								 
                     
                     
                    