Remotely Controlled Miniature Biological Robots Could Be Used for MIS and Detection of Disease Biomarkers
By HospiMedica International staff writers Posted on 23 Jan 2023 |

A team of researchers has developed remotely controlled miniature biological robots that could find potential applications in medicine, such as minimum invasive surgery or detection of cancer within the human body.
The hybrid “eBiobots” are the first to combine soft materials, living muscle and microelectronics, according to researchers at the University of Illinois Urbana-Champaign (Champaign, IL, USA), Northwestern University (Evanston, IL, USA) and collaborating institutions. They have described their centimeter-scale biological machines in the journal Science Robotics.
Researchers at the University of Illinois Urbana-Champaign had earlier developed biobots, which are small biological robots powered by mouse muscle tissue grown on a soft 3D-printed polymer skeleton. In 2012, the team had demonstrated walking biobots. In 2016, they had also demonstrated light-activated biobots which provided the researchers with some control. However, the inability to deliver the light pulses to the biobots outside of a lab setting limited their practical applications. This time, researchers at Northwestern University helped integrate tiny wireless microelectronics and battery-free micro-LEDs, allowing them to remotely control the eBiobots.
With the aim of providing freedom of movement to the biobots in order to make them suitable for practical applications, the researchers focused on eliminating bulky batteries and tethering wires. The eBiobots use a receiver coil to harvest power and provide a regulated output voltage to power the micro-LEDs. The researchers are able to send a wireless signal to the eBiobots that prompts the LEDs to pulse. The LEDs stimulate the light-sensitive engineered muscle to contract, moving the polymer legs so that the machines can “walk.” The micro-LEDs are so targeted in a way that they can activate specific portions of muscle, making the eBiobot turn in the desired direction.
Using computational modeling, the researchers optimized the eBiobot design and integrated the components for robustness, speed and maneuverability. The iterative design and additive 3D printing of the scaffolds enabled rapid cycles of experiments and improvement in performance, according to the researchers. The design offers potential for future integration of additional microelectronics, such as chemical and biological sensors, or 3D-printed scaffold parts for functions like pushing or transporting things that the biobots can encounter. The integration of electronic sensors or biological neurons could allow the eBiobots to sense and respond to biomarkers for disease, among other possibilities.
“Integrating microelectronics allows the merger of the biological world and the electronics world, both with many advantages of their own, to now produce these electronic biobots and machines that could be useful for many medical, sensing and environmental applications in the future,” said study co-leader Rashid Bashir, an Illinois professor of bioengineering and dean of the Grainger College of Engineering.
“In developing a first-ever hybrid bioelectronic robot, we are opening the door for a new paradigm of applications for health care innovation, such as in-situ biopsies and analysis, minimum invasive surgery or even cancer detection within the human body,” said co-first author Zhengwei Li, an assistant professor of biomedical engineering at the University of Houston.
Related Links:
University of Illinois Urbana-Champaign
Northwestern University
Latest Surgical Techniques News
- First-Ever Technology Makes Blood Translucent During Surgery
- Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
- New Imaging Probe to Transform Brain Cancer Surgery
- New Technology More Than Doubles Success Rate for Blood Clot Removal
- Surgical Ablation During CABG Improves Survival in Patients with Preexisting Atrial Fibrillation
- New Battery Technology Delivers Additional Power to Implantable Medical Devices
- New Model Reveals Optimal Positioning of Orthopedic Screws in Fractures
- Non-Invasive Tool for Removing Lung Cancer Tumors Reduces Surgical Trauma
- Advanced Imaging Endoscopes to Revolutionize Detection and Treatment of Gastrointestinal Disorders
- Novel Mechanical Heart Valve Improves Blood Flow and Lowers Risk of Blood Clots
- First-of-Its-Kind Device Replaces Mitral Valve Without Open-Heart Surgery
- Innovation in Thermographic Neurosurgical Imaging Supports Informed Decision-Making
- Fluorescent Soft Robots Accurately Locate Early Gastric Cancer During Laparoscopic Surgery
- Ultrasound-Activated Microstructures Clean Implanted Stents and Catheters
- First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment
- Bioprinted Aortas Offer New Hope for Vascular Repair
Channels
Critical Care
view channel
New System Measures Blood Sodium Without Needles
Accurately measuring blood sodium levels is crucial for diagnosing and managing various health conditions, including dehydration, kidney disease, and certain neurological and endocrine disorders.... Read more
Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
A new study presented at ASM Microbe 2025 has provided strong evidence that higher levels of fungal spores in the air are closely associated with spikes in influenza and COVID-19 cases. The findings suggest... Read moreSurgical Techniques
view channel
First-Ever Technology Makes Blood Translucent During Surgery
No matter the discipline or scale, bleeding is a regular part of any surgery and can create several challenges. In operating room imaging, seeing through blood in real-time during a surgery has been a... Read more
Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
Smith+Nephew (Hull, UK;) has launched its new TRIGEN MAX Tibia Nailing System for stable and unstable fractures of the tibia, including the shaft. It is the only system to now offer trauma surgeons the... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more