Wirelessly Connected Microimplants Enable Patient-Doctor Communication
|
By HospiMedica International staff writers Posted on 06 Feb 2023 |

Active implants such as brain or heart pacemakers stimulate the nerves by using electrical pulses. Unlike most drugs, they have a direct, local effect and have almost zero side effects as they operate using electrical signals. However, these implants also have some disadvantages. For instance, it is possible for the cable connections between the central implant and the electrodes to break down, and their batteries also need regular replacement. Researchers have now developed a new generation of active, wirelessly connected microimplants that could be implanted in the body for life. In addition to communicating with each other, these implants also allow the patient and doctor to communicate with the network from outside at any time.
Led by the Fraunhofer Institute for Biomedical Engineering IBMT (Sulzbach, Germany), the innovation cluster INTAKT comprising 18 partners from industry, science and the medical sector has developed a network of up to 12 microimplants that can communicate with each other wirelessly, securely and in real time. The tiny assistants that can be implanted in the body could improve the quality of life for people with functional limitations. These miniature assistants can act as a stimulus in patients with tinnitus or digestive tract disorders or help a person’s hand to regain the ability to grip.
For the INTAKT joint research project, the cluster partners chose delaying or coordinating bowel movements as one of the three areas of application. Gastrointestinal motility disorders, or disorders of movement in the gastrointestinal tract, occur after abdominal surgery in diabetic or paraplegic patients. By placing them at strategic areas in the gastrointestinal tract, each of the implants collect data on the activity of one section of the patient’s system and then sends this information to a central control unit. The unit analyzes the data and instructs the corresponding implants to stimulate the affected part of the intestinal tract, thus ensuring smooth running of the digestive process.
The implants use wireless and infrared signals to interact with each other. However, the problem of energy supply is hindering the development process of the high-tech miniatures. Batteries occupy space and must be replaced regularly. This creates a problem when dealing with a network of implants as each device has different energy consumption levels depending upon their usage. To overcome the problem, the researchers have opted for inductive charging which allows the central control unit to reliably supply the network of implants with energy throughout the day. For emergency situations, the implants include a battery for buffer storage that is also charged regularly via the inductive system.
“The patient can configure their implants to suit their current needs at any time via their laptop or smartphone and optimize their treatment or recovery process in consultation with their doctor,” explained Prof. Klaus-Peter Hoffmann, former head of Biomedical Engineering at Fraunhofer IBMT. “This external energy supply ensures that the implant network will remain stable in the long term. What’s more, the energy supply is adaptive – each individual implant receives the exact amount of energy it needs.”
Related Links:
Fraunhofer IBMT
Latest Surgical Techniques News
- New Study Findings Could Halve Number of Stent Procedures
- Breakthrough Surgical Device Redefines Hip Arthroscopy
- Automated System Enables Real-Time "Molecular Pathology" During Cancer Surgery
- Groundbreaking Procedure Combines New Treatments for Liver Tumors
- Ablation Reduces Stroke Risk Associated with Atrial Fibrillation
- Optical Tracking Method Identifies Target Areas in Robot-Assisted Neurosurgery
- General Anesthesia Improves Post-Surgery Outcomes for Acute Stroke Patients
- Drug-Coated Balloons Can Replace Stents Even in Larger Coronary Arteries
- Magnetic Kidney Stone Retrieval Device Outperforms Ureteroscopic Laser Lithotripsy
- Absorbable Skull Device Could Replace Traditional Metal Implants Used After Brain Surgery
- Magic Silicone Liquid Powered Robots Perform MIS in Narrow Cavities
- 'Lab-on-a-Scalpel' Provides Real-Time Surgical Insights for POC Diagnostics in OR
- Biodegradable Brain Implant Prevents Glioblastoma Recurrence
- Tiny 3D Printer Reconstructs Tissues During Vocal Cord Surgery
- Minimally Invasive Procedure for Aortic Valve Disease Has Similar Outcomes as Surgery
- Safer Hip Implant Design Prevents Early Femoral Fractures
Channels
Critical Care
view channel
Magnetically Guided Microrobots to Enable Targeted Drug Delivery
Stroke affects 12 million people globally each year, often causing death or lasting disability. Current treatment relies on systemic administration of clot-dissolving drugs, which circulate throughout... Read more
Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
Traumatic brain injury (TBI) continues to leave millions with long-term disabilities every year. After a sudden impact from a fall, collision, or accident, the brain undergoes inflammation, oxidative stress,... Read more
Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
Blood loss during or after surgery can place significant stress on people with heart disease, increasing the risk of dangerous complications. Transfusions are often delayed until hemoglobin levels fall... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







