Wirelessly Connected Microimplants Enable Patient-Doctor Communication
| By HospiMedica International staff writers Posted on 06 Feb 2023 | 

Active implants such as brain or heart pacemakers stimulate the nerves by using electrical pulses. Unlike most drugs, they have a direct, local effect and have almost zero side effects as they operate using electrical signals. However, these implants also have some disadvantages. For instance, it is possible for the cable connections between the central implant and the electrodes to break down, and their batteries also need regular replacement. Researchers have now developed a new generation of active, wirelessly connected microimplants that could be implanted in the body for life. In addition to communicating with each other, these implants also allow the patient and doctor to communicate with the network from outside at any time.
Led by the Fraunhofer Institute for Biomedical Engineering IBMT (Sulzbach, Germany), the innovation cluster INTAKT comprising 18 partners from industry, science and the medical sector has developed a network of up to 12 microimplants that can communicate with each other wirelessly, securely and in real time. The tiny assistants that can be implanted in the body could improve the quality of life for people with functional limitations. These miniature assistants can act as a stimulus in patients with tinnitus or digestive tract disorders or help a person’s hand to regain the ability to grip.
For the INTAKT joint research project, the cluster partners chose delaying or coordinating bowel movements as one of the three areas of application. Gastrointestinal motility disorders, or disorders of movement in the gastrointestinal tract, occur after abdominal surgery in diabetic or paraplegic patients. By placing them at strategic areas in the gastrointestinal tract, each of the implants collect data on the activity of one section of the patient’s system and then sends this information to a central control unit. The unit analyzes the data and instructs the corresponding implants to stimulate the affected part of the intestinal tract, thus ensuring smooth running of the digestive process.
The implants use wireless and infrared signals to interact with each other. However, the problem of energy supply is hindering the development process of the high-tech miniatures. Batteries occupy space and must be replaced regularly. This creates a problem when dealing with a network of implants as each device has different energy consumption levels depending upon their usage. To overcome the problem, the researchers have opted for inductive charging which allows the central control unit to reliably supply the network of implants with energy throughout the day. For emergency situations, the implants include a battery for buffer storage that is also charged regularly via the inductive system.
“The patient can configure their implants to suit their current needs at any time via their laptop or smartphone and optimize their treatment or recovery process in consultation with their doctor,” explained Prof. Klaus-Peter Hoffmann, former head of Biomedical Engineering at Fraunhofer IBMT. “This external energy supply ensures that the implant network will remain stable in the long term. What’s more, the energy supply is adaptive – each individual implant receives the exact amount of energy it needs.”
Related Links:
Fraunhofer IBMT
Latest Critical Care News
- 'Universal' Kidney to Match Any Blood Type
- Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
- AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
- Smartphone Imaging System Enables Early Oral Cancer Detection
- Swallowable Pill-Sized Bioprinter Treats GI Tract Injuries  
- Personalized Brain “Pacemakers” Could Help Patients with Hard-To-Treat Epilepsy
- Microscopic DNA Flower Robots to Enable Precision Medicine Delivery
- Origami Robots to Deliver Medicine Less Invasively and More Effectively
- Improved Cough-Detection Technology Aids Health Monitoring
- AI Identifies Children in ER Likely to Develop Sepsis Within 48 Hours
- New Radiofrequency Therapy Slows Glioblastoma Growth
- Battery-Free Wireless Multi-Sensing Platform Revolutionizes Pressure Injury Detection
- Multimodal AI to Revolutionize Cardiovascular Disease Diagnosis and Treatment
- AI System Reveals Hidden Diagnostic Patterns in Electronic Health Records
- Highly Sensitive On-Skin Sensing Monitor Detects Vitamin B6 and Glucose in Sweat
- Artificial Intelligence Revolutionizing Pediatric Anesthesia Management
Channels
Critical Care
view channel 
                    Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
Monitoring blood flow in the brain is crucial for diagnosing and treating neurological conditions such as stroke, traumatic brain injury (TBI), and vascular dementia. However, current imaging methods like... Read more 
                    AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
For decades, doctors have relied on standardized scoring systems to assess patients with the most common type of heart attack—non-ST-elevation acute coronary syndrome (NSTE-ACS). The GRACE score, used... Read morePatient Care
view channel 
                    Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more 
                    VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more 
                    Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more 
                    First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel 
                    Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel 
                    Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more 
                    B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more 
                    CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more 
                    















 
								

 
								
 
								 
                     
                     
                    