Crocodile-Skin-Inspired Omnidirectionally Stretchable Pressure Sensor Could Find Diverse Healthcare Applications
|
By HospiMedica International staff writers Posted on 23 Mar 2023 |

Creating electronic skin with multiple senses is crucial for numerous fields, such as healthcare, rehabilitation, prosthetic limbs, and robotics. A critical element of this technology is stretchable pressure sensors that can identify different types of touch and pressure. A team of researchers has now achieved a significant breakthrough by developing omnidirectionally stretchable pressure sensors modeled after crocodile skin.
Researchers at Pohang University of Science and Technology (POSTECH, Gyeongbuk. Korea) and the University of Ulsan (Ulsan, Korea) were inspired by the distinctive sensory organ present in crocodile skin and created pressure sensors with microdomes and wrinkled surfaces. This innovative approach resulted in the development of an omnidirectionally stretchable pressure sensor. Crocodiles, fearsome predators that spend most of their time submerged underwater, possess an exceptional ability to detect small waves and determine the direction of their prey. This ability is facilitated by an extremely complex and sensitive sensory organ located on their skin that comprises hemispheric sensory bumps arranged in a recurring pattern with wrinkled hinges in between. When the crocodile moves, the hinges deform, while the sensory part remains unaffected by mechanical deformations, allowing the predator to retain an extraordinary level of sensitivity to external stimuli when it is swimming or hunting underwater.
The research team successfully replicated the structure and function of the crocodile's sensory organ, resulting in a remarkably stretchable pressure sensor. To achieve this, they developed a hemispheric elastomeric polymer with intricate wrinkles, containing either long or short nanowires. This led to the development of a device that surpasses the performance of currently available pressure sensors. Other sensors lose their sensitivity when subjected to mechanical deformations, while the newly developed sensor retains its sensitivity even when stretched in one or two different directions. The delicate wrinkled structure on the sensor's surface enables it to maintain high pressure sensitivity, even when subjected to substantial deformation.
The sensor's wrinkled structure unfolds and reduces stress on the hemispheric sensing area that is responsible for detecting applied pressure when an external mechanical force is applied, allowing the sensor to maintain its pressure sensitivity even under deformations. This exceptional sensitivity to pressure allows the sensor to maintain its performance even when stretched up to 100% in one direction and 50% in two different directions. The new stretchable pressure sensor could be ideal for a wide range of wearable devices with diverse applications. The researchers tested the sensor’s performance by mounting it on a plastic crocodile and submerging it in water. Surprisingly, the mounted sensor managed to mimic the sensing capabilities of a crocodile's sensory organ and detect small water waves.
“This is a wearable pressure sensor that effectively detects pressure even when under tensile strain,” explained Professor Kilwon Cho who led the research team. “It could be used for diverse applications such as pressure sensors of prosthetics, electronic skin of soft robotics, VR, AR, and human-machine interfaces.”
Related Links:
POSTECH
University of Ulsan
Latest Critical Care News
- Magnetically Guided Microrobots to Enable Targeted Drug Delivery

- Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
- Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
- 'Smart' Shirt Detects Epileptic Seizures in Real Time
- Skin Patch Measures Effectiveness of Flu/COVID Vaccines in 10 Minutes
- Complete Revascularization Reduces Risk of Death from Cardiovascular Causes
- Tiny Fish-Inspired Robots Navigate Through Body to Deliver Targeted Drug Therapy
- Coronary Artery Stenosis Could Protect Patients from Pulmonary Embolism Effects
- Sweat-Powered Sticker Turns Drinking Cup into Health Sensor
- Skin-Mounted 3D Microfluidic Device Analyzes Sweat for Real-Time Health Assessment
- New Therapeutic Brain Implants to Eliminate Need for Surgery
- Stem Cell Patch Gently Heals Damaged Hearts Without Open-Heart Surgery
- Biomaterial Vaccines to Make Implanted Orthopedic Devices Safer
- Deep Learning Model Predicts Sepsis Patients Likely to Benefit from Steroid Treatment
- Programmable Drug-Delivery Patch Promotes Healing and Regrowth After Heart Attack
- Breakthrough Ultrasound Technology Measures Blood Viscosity in Real Time
Channels
Surgical Techniques
view channel
New Study Findings Could Halve Number of Stent Procedures
When a coronary artery becomes acutely blocked during a heart attack, opening it immediately is essential to prevent irreversible damage. However, many patients also have other narrowed vessels that appear... Read more
Breakthrough Surgical Device Redefines Hip Arthroscopy
Hip arthroscopy has surged in popularity, yet surgeons still face major mechanical constraints when navigating deep joint spaces through traditional cannulas. Limited tool mobility and the need for an... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







