We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

3D-Printed Models of Human Brain Could Improve and Personalize Neurosurgery

By HospiMedica International staff writers
Posted on 27 Mar 2023
Image: This diagram shows the AMULIT technique printing the bronchi of a lung model within a bath of supporting material (Photo courtesy of University of Florida)
Image: This diagram shows the AMULIT technique printing the bronchi of a lung model within a bath of supporting material (Photo courtesy of University of Florida)

Neurosurgeons often practice surgeries prior to the actual procedure using patient brain models, but current models lack realism in replicating blood vessels and providing accurate tactile feedback. Additionally, they may not include crucial anatomical structures that affect the surgery. To improve accuracy and reduce errors during actual surgeries, personalized 3D printed replicas of patient brains could be used, as they can replicate the soft texture and structural details needed for effective pre-surgery preparation.

Scientists at the University of Florida (Gainesville, FL, USA) have developed a new 3D printing method using silicone that can create accurate models of blood vessels in the brain, providing neurosurgeons with more realistic simulations for pre-surgical preparation. While embedded 3D printing has been successful for creating various soft materials, such as hydrogels, microparticles, and living cells, printing with silicone has been challenging. Due to the high interfacial tension between oil (which liquid silicone is) and water-based support materials, 3D-printed silicone structures have been prone to deform and small-diameter features break into droplets during the printing process.

Numerous studies have been conducted to produce silicone materials that can be printed without the need for support. However, altering the properties of silicone to achieve this also affects the material's softness and stretchiness, which are significant considerations for users. To address the issue of interfacial tension, researchers from the fields of soft matter physics, mechanical engineering, and materials science have developed a support material using silicone oil. The team hypothesized that most silicone inks would share chemical similarities with their silicone support material, thereby significantly reducing interfacial tension while remaining distinct enough to be printed separately in 3D.

The team of researchers tested various support materials but determined that the most effective solution was to create a dense emulsion of silicone oil and water that resembled a crystal clear mayonnaise, made from packed microdroplets of water in a continuum of silicone oil. The researchers coined the term "additive manufacturing at ultra-low interfacial tension" (AMULIT) for this method. Using the AMULIT support material, the researchers managed to print off-the-shelf silicone at high resolution, producing features as small as 8 micrometers (approximately 0.0003 inches) in diameter. The printed structures were equally durable and stretchy as those produced through traditional molding. This breakthrough allowed the team to create precise 3D models of a patient’s brain blood vessels based on a 3D scan and a functioning heart valve model based on average human anatomy.

Related Links:
University of Florida 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Absorbable Monofilament Mesh
Phasix Mesh
Semi‑Automatic Defibrillator
Heart Save AED (ED300)

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more