New Coronary IVL Catheter Treats Severely Calcified Coronary Artery Disease Using Pulsatile Sonic Pressure
By HospiMedica International staff writers Posted on 24 May 2023 |

One in three patients with coronary artery disease have calcified lesions, with heavily calcified coronary lesions posing significant challenges in current coronary interventions due to difficulty in dilation. Existing treatment solutions, including high pressure and modified balloons, as well as atherectomy, face limitations due to their inability to reliably dilate vessels with rigid, severe calcium. These technologies only treat superficial calcium, leaving deep calcium untreated, which can affect procedural outcomes.
Now, the latest device to treat severely calcified coronary artery disease - Shockwave Intravascular Lithotripsy (S-IVL) System with the Shockwave C2 Coronary Intravascular Lithotripsy (IVL) Catheter from Shockwave Medical (Santa Clara, CA, USA) – effectively addresses these challenges. IVL utilizes sonic pressure waves to break down calcium in situ. After inflating the integrated balloon to 4-atm, a small spark at the emitters vaporizes the saline-contrast solution and generates a bubble. This bubble quickly expands and collapses within the balloon, resulting in a brief burst of sonic pressure waves. These waves pass through the coronary tissue and reflect off the calcium, breaking it down with an effective pressure of about 50 atm. The emitters positioned along the length of the device create a localized field within the vessel to fracture both intimal and medial calcium. The integrated balloon plays a crucial role; it positions against the vessel wall to facilitate efficient energy transfer during IVL, then helps to dilate the lesion to maximize lumen gain.
The Shockwave C2+ Coronary IVL Catheter is specifically designed to treat longer calcified lesions and more challenging eccentric and nodular calcium. It minimizes trauma to soft tissue by safely targeting and fracturing intimal and medial calcium. This optimizes stent delivery, expansion and apposition while reducing the risk of perforation and cost escalation. With its straightforward and intuitive system, it makes complex calcified coronary procedures more predictable. The Shockwave C2+ offers 50% more pulses per catheter than Shockwave C2, making it particularly suitable for treating longer calcified lesions and more challenging eccentric and nodular calcium.
“Shockwave C2+ maintains the intuitive catheter design and ease of use that are foundational to the success of Shockwave IVL and incorporates improvements that will enhance procedural efficiency and optimize the treatment of the most challenging morphologies,” said Jonathan Hill, MD, Consultant Cardiologist at London’s Royal Brompton Hospital. “The extra pulses are most advantageous in areas with the highest burden of calcium, including nodular, eccentric, diffuse and multivessel calcium.”
Related Links:
Shockwave Medical
Latest Critical Care News
- Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
- Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment
- Self-Healing Skin-Like Material to Find Applications in Health Monitoring, Surgery and Implants
- Highly-Sensitive Electronic Skin Allows Robots to Feel Heat, Pain and Pressure
Channels
Surgical Techniques
view channel
New Surgical Microscope Offers Precise 3D Imaging Using 48 Tiny Cameras
Surgeons have long relied on stereoscopic microscopes to gain depth perception during delicate procedures, but this method has limitations. While these microscopes provide a sense of three-dimensionality,... Read more
First-Of-Its-Kind Drug Illuminates Nerve Tissue for Faster and Safer Surgery
Surgeons face significant challenges when performing procedures near nerves, as they must work cautiously to avoid causing nerve damage, which can complicate the patient's recovery. Electrophysical monitors... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more