We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Smartphone Magnetometer Uses Magnetized Hydrogel to Measure Biomarkers for Disease Diagnosis

By HospiMedica International staff writers
Posted on 03 Apr 2024
Print article
Image: The smartphone magnetometer can measure a host of biomedical properties in liquid samples using a magnetized hydrogel (Photo courtesy of NIST)
Image: The smartphone magnetometer can measure a host of biomedical properties in liquid samples using a magnetized hydrogel (Photo courtesy of NIST)

Almost every modern smartphone incorporates a compass or magnetometer, which senses Earth's magnetic field, crucial for navigation purposes. Now, a newly developed technique uses an ordinary cellphone magnetometer to precisely measure glucose levels, an important diabetes indicator. This approach, combined with magnetic materials that change their shape in reaction to biological or environmental stimuli, can be employed to assess a wide array of biomedical properties crucial for human disease monitoring or diagnosis, as well as detecting environmental pollutants.

In their proof-of-concept study, a team of researchers at the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA) attached a tiny well filled with the test solution and a hydrogel strip, to a smartphone. This hydrogel, a porous material that swells when immersed in water, was embedded with tiny magnetic particles engineered to respond to glucose presence or pH changes by swelling or contracting. Changing pH levels is associated with various biological disorders. When the hydrogels enlarged or shrank, they forced the magnetic particles to come closer to or go farther from the cellphone’s magnetometer, which detected the corresponding changes in the strength of the magnetic field. Utilizing this innovative approach, the team succeeded in measuring glucose concentrations as small as a few millionths of a mole levels. Although such high sensitivity is not needed for home glucose monitoring using blood tests, it could pave the way for saliva-based glucose testing, where sugar concentration is notably lower.

The method's simplicity, without the need for any additional electronics or power sources except for the smartphone or requirement for sample processing, presents an economical solution for widespread testing, even in resource-limited areas. Future potential improvements in measuring accuracy through smartphone magnetometers could lead to detection of DNA, specific proteins, and histamines — key immune response elements — at extremely low concentrations. For example, accurately measuring histamines, typically found in urine at concentrations ranging from about 45 to 190 nanomoles, would usually require a 24-hour urine collection and complex lab analyses. Similarly, the team found that a cellphone magnetometer can measure pH levels with sensitivity equal to a thousand-dollar benchtop meter but at a substantially lower cost. To make smartphone-based measurements a market success, engineers will have to devise a mass-production strategy for the hydrogel test strips and ensure their long shelf life.

Related Links:
NIST

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Vertebral Body Replacement System
Hydrolift
New
Transparietal Needle
PIA

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more