Smartphone Magnetometer Uses Magnetized Hydrogel to Measure Biomarkers for Disease Diagnosis
By HospiMedica International staff writers Posted on 03 Apr 2024 |

Almost every modern smartphone incorporates a compass or magnetometer, which senses Earth's magnetic field, crucial for navigation purposes. Now, a newly developed technique uses an ordinary cellphone magnetometer to precisely measure glucose levels, an important diabetes indicator. This approach, combined with magnetic materials that change their shape in reaction to biological or environmental stimuli, can be employed to assess a wide array of biomedical properties crucial for human disease monitoring or diagnosis, as well as detecting environmental pollutants.
In their proof-of-concept study, a team of researchers at the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA) attached a tiny well filled with the test solution and a hydrogel strip, to a smartphone. This hydrogel, a porous material that swells when immersed in water, was embedded with tiny magnetic particles engineered to respond to glucose presence or pH changes by swelling or contracting. Changing pH levels is associated with various biological disorders. When the hydrogels enlarged or shrank, they forced the magnetic particles to come closer to or go farther from the cellphone’s magnetometer, which detected the corresponding changes in the strength of the magnetic field. Utilizing this innovative approach, the team succeeded in measuring glucose concentrations as small as a few millionths of a mole levels. Although such high sensitivity is not needed for home glucose monitoring using blood tests, it could pave the way for saliva-based glucose testing, where sugar concentration is notably lower.
The method's simplicity, without the need for any additional electronics or power sources except for the smartphone or requirement for sample processing, presents an economical solution for widespread testing, even in resource-limited areas. Future potential improvements in measuring accuracy through smartphone magnetometers could lead to detection of DNA, specific proteins, and histamines — key immune response elements — at extremely low concentrations. For example, accurately measuring histamines, typically found in urine at concentrations ranging from about 45 to 190 nanomoles, would usually require a 24-hour urine collection and complex lab analyses. Similarly, the team found that a cellphone magnetometer can measure pH levels with sensitivity equal to a thousand-dollar benchtop meter but at a substantially lower cost. To make smartphone-based measurements a market success, engineers will have to devise a mass-production strategy for the hydrogel test strips and ensure their long shelf life.
Related Links:
NIST
Latest Critical Care News
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
- Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment
- Self-Healing Skin-Like Material to Find Applications in Health Monitoring, Surgery and Implants
- Highly-Sensitive Electronic Skin Allows Robots to Feel Heat, Pain and Pressure
- AI-Powered Wearable Sensor Predicts Labor Onset in Pregnant Women
- Implantable Device to Redefine Continuous Glucose Monitoring
- Smart Microgel Could Repair and Replace Damaged Organs
- Smart Breath Tracker Wristband to Revolutionize Respiratory Care
- Stronger Blood Clot Prevention Measures Needed After Leg Artery Procedures in High-Risk Patients
Channels
Surgical Techniques
view channel
First-Ever Technology Makes Blood Translucent During Surgery
No matter the discipline or scale, bleeding is a regular part of any surgery and can create several challenges. In operating room imaging, seeing through blood in real-time during a surgery has been a... Read more
Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
Smith+Nephew (Hull, UK;) has launched its new TRIGEN MAX Tibia Nailing System for stable and unstable fractures of the tibia, including the shaft. It is the only system to now offer trauma surgeons the... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more