Non-Invasive Technique Combines Cardiac CT with AI-Powered Blood Flow for Heart Bypass Surgery
By HospiMedica International staff writers Posted on 08 Apr 2024 |

Researchers have tested a new approach to the guidance, planning, and conducting of heart bypass surgery on patients for the first time, demonstrating that non-invasive cardiac CT, with AI-powered blood flow scanning, is safe and feasible.
In the FAST TRACK CABG study, overseen by a research team at the University of Galway (Galway, Ireland; ), heart surgeons planned and carried out coronary artery bypass grafting (CABG). The procedure was performed based only on non-invasive cardiac-CT scan images using GE Healthcare’s (Chicago, IL, USA) Revolution CT, along with HeartFlow, Inc.’s (Redwood City, CA, USA) AI-powered blood flow analysis of the patient’s coronary arteries. This first-of-its-kind human study demonstrated 99.1% feasibility, indicating that heart bypass surgery performed without utilizing invasive diagnostic catheterization is feasible and safe, based on good diagnostic accuracy provided by the cardiac CT scan and AI-powered blood flow analysis. The study found similar outcomes in terms of safety and effectiveness in patients who had previously undergone bypass surgery guided by conventional invasive angiography, which requires the insertion of a catheter through an artery in the wrist or groin to access diseased arteries and the use of dye to visualize blockages.
Conducted across leading cardiac care hospitals in Europe and the US, the study included 114 patients with severe coronary artery blockages, impacting their heart blood flow. The cardiac CT scans provided in the study delivered exceptional resolution, producing images on par with, or superior to, those obtained through invasive contrast dye injections directly into the heart’s arteries through a catheter. Throughout the trial, detailed cardiovascular imagery and data analyses were performed by the University of Galway team and shared via telemedicine with surgeons at participating hospitals. The HeartFlow Analysis performs an AI-powered blood flow analysis called Fractional Flow Reserve derived from CT (FFRCT) to quantify how poorly the narrowed vessel provides blood to the heart muscle, assisting the surgeon in identifying which of the patient’s vessels require a bypass graft. The FAST TRACK CABG trial's findings indicate that this innovative, less invasive approach to heart bypass surgery is as safe and effective as traditional methods. The study highlights the potential for replacing the risks associated with invasive procedures with non-invasive cardiac CT imaging and AI-based blood flow analysis, offering a significant advancement in cardiac care and surgery planning.
“The results of this trial have the potential to simplify the planning for patients undergoing heart bypass surgery,” said trial chairman Professor Patrick W Serruys, Established Professor of Interventional Medicine and Innovation at University of Galway. “The potential for surgeons to address even the most intricate cases of coronary artery disease using only a non-invasive CT scan, and FFRCT represents a monumental shift in healthcare. Following the example of the surgeon, interventional cardiologists could similarly consider circumventing traditional invasive cineangiography and instead rely solely on CT scans for procedural planning. This approach not only alleviates the diagnostic burden in cath labs but also paves the way for transforming them into dedicated ‘interventional suites’- ultimately enhancing patient workflows.”
Related Links:
University of Galway
GE Healthcare
HeartFlow, Inc.
Latest Surgical Techniques News
- Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next
- World’s First Custom Anterior Cervical Spine Surgery Performed Using Personalized Implant
- Implantable Biodegradable Scaffold Helps Broken Bones Regrow Quickly
- First Human Spinal Cord Repair Using Patient Own Cells Could Cure Paralysis
- 'Dual-Mode' Tracer Enables Surgeons to See and Hear Prostate Cancer
- Pioneering One-Stage Hybrid Surgery Ensures Safer Outcomes in Brain and Spine Tumors
- Reimplanting Lab-Grown Patient Cartilage Accelerates Healing After Hip Surgery
- Diamond-Based Sensor Pinpoints Metastasized Cancer for Surgical Removal
- Minimally Invasive Valve Repair Improves Survival in Elderly AFMR Patients
- Tiny Soft Robots Dissolve Painful Kidney Stones with Targeted Drug Delivery
- Implantable 3D Patch Closes and Repairs Heart Defects
- New Endoscopy Technology Enables Early Detection of Esophageal Cancer
- New Implant Enables Women to Access Hip Resurfacing Surgery
- Surgical Micro-Robot Sees and Corrects Movements from Within
- AI Cuts Diagnostic Delays in Prostate Cancer
- 'Google Maps' for Surgeons to Help Perform Complex Robot-Assisted Esophagectomy
Channels
Critical Care
view channel
AI Model Identifies AF Patients Requiring Blood Thinners to Prevent Stroke
Atrial fibrillation (AF) is the most common abnormal heart rhythm, affecting around 59 million people globally. It increases stroke risk because quivering in the upper heart chambers allows blood clots... Read more
Soft Robot Intubation Device Could Save Lives
Maintaining an open airway is one of the most critical priorities in emergency medicine, as without oxygen flow, other interventions can quickly fail. Endotracheal intubation is the gold standard but remains... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more