AI Brain-Age Estimation Technology Uses EEG Scans to Screen for Degenerative Diseases
By HospiMedica International staff writers Posted on 29 Apr 2024 |

As individuals age, so do their brains. Premature aging of the brain can lead to age-related conditions such as mild cognitive impairment, dementia, or Parkinson's disease. The ability to determine "brain age" easily could allow for early intervention in cases of premature brain aging, potentially averting severe health issues. Researchers have now developed an artificial intelligence (AI) technique capable of estimating a person's brain age using electroencephalogram (EEG) brain scans, potentially making early and regular screening for degenerative brain diseases more accessible.
Researchers from Drexel University (Philadelphia, PA, USA) employed a type of AI known as machine learning to gauge an individual's brain age in a manner similar to estimating a person's age based on their physical appearance. This measure is viewed as an indicator of general brain health. If an individual's brain appears younger compared to that of other healthy individuals of the same age, it typically raises no concerns. However, if a brain appears older than those of similarly aged healthy peers, it might indicate premature brain aging—or a "brain-age gap." Such gaps, the researchers note, can result from diseases, exposure to toxins, poor nutrition, or injuries, and they may increase susceptibility to age-related neurological disorders. Despite the importance of brain-age estimates as health markers, they have not been extensively utilized in healthcare settings.
Typically, machine-learning algorithms can learn from MRI images of healthy brains to identify features that predict an individual's brain age. By inputting numerous MRI images of healthy brains into a machine-learning algorithm along with the chronological ages of those brains, the algorithm learns to estimate the age of an individual’s brain based on their MRI. Adapting this approach, the researchers developed a method using EEGs instead of MRIs. An EEG, which records brain waves, is a more affordable and less invasive test than an MRI, requiring only that the patient wear a headset for a few minutes. Thus, a machine-learning program that can determine brain age from EEG scans could provide a more accessible tool for monitoring brain health, the researchers suggest.
“Brain MRIs are expensive and, until now, brain-age estimation has been done only in neuroscience research laboratories,” said John Kounios, PhD, a professor at Drexel University who led the team. “But my colleagues and I have developed a machine-learning technology to estimate a person’s brain age using a low-cost EEG system.”
“It can be used as a relatively inexpensive way to screen large numbers of people for vulnerability to age-related. And because of its low cost, a person can be screened at regular intervals to check for changes over time,” Kounios said. “This can help to test the effectiveness of medications and other interventions. And healthy people could use this technique to test the effects of lifestyle changes as part of an overall strategy for optimizing brain performance.”
Related Links:
Drexel University
Latest Critical Care News
- AI-Enhanced Echocardiography Improves Early Detection of Amyloid Buildup in Heart
- Consumer Wearables Could Predict Pediatric Surgery Complications
- Wireless Implant Delivers Chemotherapy Deep into Tumors Without Side Effects
- Skin-Like Sensor Monitors Vital Signs and Tracks Healing After Surgery
- Implantable Device Could Save Diabetes Patients from Dangerously Low Blood Sugar
- New Prostate Screening Device Could Replace Traditional Examination Method
- Adaptive Spine Board to Revolutionize ER Transport
- Mapping Communication Between Internal Organs to Enable Earlier Illness Diagnosis
- Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
Channels
Surgical Techniques
view channel
Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery
Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more