We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

AI Brain-Age Estimation Technology Uses EEG Scans to Screen for Degenerative Diseases

By HospiMedica International staff writers
Posted on 29 Apr 2024
Print article
Image: Postdoctoral researcher Yongtaek Oh wearing the EEG device (Photo courtesy of Drexel University)
Image: Postdoctoral researcher Yongtaek Oh wearing the EEG device (Photo courtesy of Drexel University)

As individuals age, so do their brains. Premature aging of the brain can lead to age-related conditions such as mild cognitive impairment, dementia, or Parkinson's disease. The ability to determine "brain age" easily could allow for early intervention in cases of premature brain aging, potentially averting severe health issues. Researchers have now developed an artificial intelligence (AI) technique capable of estimating a person's brain age using electroencephalogram (EEG) brain scans, potentially making early and regular screening for degenerative brain diseases more accessible.

Researchers from Drexel University (Philadelphia, PA, USA) employed a type of AI known as machine learning to gauge an individual's brain age in a manner similar to estimating a person's age based on their physical appearance. This measure is viewed as an indicator of general brain health. If an individual's brain appears younger compared to that of other healthy individuals of the same age, it typically raises no concerns. However, if a brain appears older than those of similarly aged healthy peers, it might indicate premature brain aging—or a "brain-age gap." Such gaps, the researchers note, can result from diseases, exposure to toxins, poor nutrition, or injuries, and they may increase susceptibility to age-related neurological disorders. Despite the importance of brain-age estimates as health markers, they have not been extensively utilized in healthcare settings.

Typically, machine-learning algorithms can learn from MRI images of healthy brains to identify features that predict an individual's brain age. By inputting numerous MRI images of healthy brains into a machine-learning algorithm along with the chronological ages of those brains, the algorithm learns to estimate the age of an individual’s brain based on their MRI. Adapting this approach, the researchers developed a method using EEGs instead of MRIs. An EEG, which records brain waves, is a more affordable and less invasive test than an MRI, requiring only that the patient wear a headset for a few minutes. Thus, a machine-learning program that can determine brain age from EEG scans could provide a more accessible tool for monitoring brain health, the researchers suggest.

“Brain MRIs are expensive and, until now, brain-age estimation has been done only in neuroscience research laboratories,” said John Kounios, PhD, a professor at Drexel University who led the team. “But my colleagues and I have developed a machine-learning technology to estimate a person’s brain age using a low-cost EEG system.”

“It can be used as a relatively inexpensive way to screen large numbers of people for vulnerability to age-related. And because of its low cost, a person can be screened at regular intervals to check for changes over time,” Kounios said. “This can help to test the effectiveness of medications and other interventions. And healthy people could use this technique to test the effects of lifestyle changes as part of an overall strategy for optimizing brain performance.”

Related Links:
Drexel University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Platelet Concentration System
GPS III
New
Plastic Screen Panels
Plastic Screen Panels

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more