Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients
By HospiMedica International staff writers Posted on 16 May 2024 |

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately result in death. It is a progressive disease, making it crucial for healthcare providers to identify patients at high risk of worsening outcomes. Now, researchers have introduced a potent new risk assessment tool designed to predict the prognosis of patients with heart failure. This tool marks an advancement over previous methods by utilizing machine learning (ML) and artificial intelligence (AI) to assess individual risks of developing serious complications associated with heart failure.
This innovative model was developed by researchers at the University of Virginia Health System (Charlottesville, VA, USA), using anonymized data from thousands of patients who participated in heart failure clinical trials previously sponsored by the National Institutes of Health’s National Heart, Lung, and Blood Institute. When evaluated, the model proved more effective than existing predictors in forecasting outcomes for a wide range of patients, including the likelihood of requiring heart surgery or a transplant, the risk of rehospitalization, and the risk of mortality. The success of the model is attributed to the integration of ML/AI technologies and the inclusion of hemodynamic clinical data, which detail how blood moves through the heart, lungs, and other parts of the body. By applying this model, doctors can tailor treatment more precisely to each patient's needs, potentially extending and improving the quality of their lives, according to the researchers.
“Heart failure is a progressive condition that affects not only quality of life but quantity as well. All heart failure patients are not the same. Each patient is on a spectrum along the continuum of risk of suffering adverse outcomes,” said researcher Sula Mazimba, MD, a heart failure expert. “Identifying the degree of risk for each patient promises to help clinicians tailor therapies to improve outcomes.”
“This model presents a breakthrough because it ingests complex sets of data and can make decisions even among missing and conflicting factors,” added researcher Josephine Lamp, of the University of Virginia School of Engineering’s Department of Computer Science. “It is really exciting because the model intelligently presents and summarizes risk factors reducing decision burden so clinicians can quickly make treatment decisions.”
Related Links:
UVA Health
Latest AI News
Channels
Surgical Techniques
view channel
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read more
New Surgical Microscope Offers Precise 3D Imaging Using 48 Tiny Cameras
Surgeons have long relied on stereoscopic microscopes to gain depth perception during delicate procedures, but this method has limitations. While these microscopes provide a sense of three-dimensionality,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more