New Adhesive Hydrogel Coatings to Prolong Lifespan of Pacemakers and Medical Implants
By HospiMedica International staff writers Posted on 28 May 2024 |

When medical devices such as pacemakers are implanted in the body, they often trigger an immune response that results in the accumulation of scar tissue around the device. This scarring, known as fibrosis, can disrupt the function of the devices and may necessitate their removal. To address this issue, engineers have discovered a simple and universal method to prevent such fibrosis by coating the devices with a hydrogel adhesive. This coating binds the devices to tissue and shields them from attacks by the immune system.
The adhesive, developed by engineers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), is composed of cross-linked polymers known as hydrogels. It resembles a surgical tape they previously developed to seal internal wounds. The researchers have determined that other hydrogel adhesives could also guard against fibrosis, and they envision this method being applicable not only to pacemakers but to sensors and devices that administer drugs or therapeutic cells as well. Over the years, the team has engineered a range of adhesives for medical use, including tapes that are double-sided or single-sided, useful for repairing surgical incisions or internal damages. These adhesives function by quickly absorbing moisture from damp tissues through polyacrylic acid, a superabsorbent material found in diapers. Once the moisture is absorbed, chemical groups known as NHS esters within the polyacrylic acid form durable bonds with the proteins on the tissue surface in a process that is completed in about five seconds.
Several years ago, the team began to investigate if this type of adhesive could also maintain medical implants in position and stop fibrosis. To evaluate this, they coated polyurethane devices with the adhesive and implanted them into various sites such as the abdominal wall, colon, stomach, lung, or heart of rats. Upon removal weeks later, no scar tissue was evident. Further experiments with additional animal models consistently showed an absence of fibrosis where the adhesive-coated devices were implanted, persisting for up to three months. The team conducted bulk RNA sequencing and fluorescent imaging to analyze the immune response in the animals, discovering that initially, immune cells like neutrophils infiltrated the site of the implants. However, these attacks quickly subsided before any scar tissue could develop.
This adhesive has potential applications in coatings for epicardial pacemakers — devices positioned on the heart to regulate heart rate. The MIT researchers found that when they implanted wires coated with the adhesive in rats, the wires functioned effectively for at least three months without any scar tissue forming. They also experimented with a hydrogel adhesive that incorporates chitosan, a natural polysaccharide, which similarly prevented fibrosis in animal studies. In contrast, two commercially available tissue adhesives they tested did not prevent fibrosis, as they eventually detached from the tissue, allowing the immune system to resume its attack. In a different experiment, the researchers coated implants with hydrogel adhesives but then immersed them in a solution that stripped the polymers of their adhesive properties while retaining their overall chemical composition. After these were implanted and held in place by sutures, fibrotic scarring occurred, indicating that the mechanical interaction between the adhesive and the tissue plays a crucial role in preventing immune attacks, according to the researchers.
“The dream of many research groups and companies is to implant something into the body that over the long term the body will not see, and the device can provide therapeutic or diagnostic functionality. Now we have such an ‘invisibility cloak,’ and this is very general: There’s no need for a drug, no need for a special polymer,” said MIT professor Xuanhe Zhao.
Related Links:
MIT
Latest Surgical Techniques News
- First-Ever Technology Makes Blood Translucent During Surgery
- Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
- New Imaging Probe to Transform Brain Cancer Surgery
- New Technology More Than Doubles Success Rate for Blood Clot Removal
- Surgical Ablation During CABG Improves Survival in Patients with Preexisting Atrial Fibrillation
- New Battery Technology Delivers Additional Power to Implantable Medical Devices
- New Model Reveals Optimal Positioning of Orthopedic Screws in Fractures
- Non-Invasive Tool for Removing Lung Cancer Tumors Reduces Surgical Trauma
- Advanced Imaging Endoscopes to Revolutionize Detection and Treatment of Gastrointestinal Disorders
- Novel Mechanical Heart Valve Improves Blood Flow and Lowers Risk of Blood Clots
- First-of-Its-Kind Device Replaces Mitral Valve Without Open-Heart Surgery
- Innovation in Thermographic Neurosurgical Imaging Supports Informed Decision-Making
- Fluorescent Soft Robots Accurately Locate Early Gastric Cancer During Laparoscopic Surgery
- Ultrasound-Activated Microstructures Clean Implanted Stents and Catheters
- First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment
- Bioprinted Aortas Offer New Hope for Vascular Repair
Channels
Critical Care
view channel
Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
Spinal cord injuries remain incurable and can have life-altering consequences. These injuries disrupt the communication pathway between the brain and the body, often leading to permanent loss of function.... Read more
Smart Capsule Offers Real-Time Profiling Across GI Tract
Researchers are increasingly recognizing the gastrointestinal (GI) tract as a key player in overall health. While its primary role is in digestion, the GI tract also contributes to the production of hormones,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more