Breakthrough Computational Method Predicts Sudden Cardiac Death
By HospiMedica International staff writers Posted on 14 Jun 2024 |

Unfortunately, sudden cardiac death is often the first indication of heart disease, and it can strike even young, seemingly healthy individuals, particularly during intense physical activity. To facilitate preventive measures, accurately assessing the risk of sudden death is crucial. Current consumer devices like smartwatches, which measure heart rate, possess the basic technical capabilities needed for identifying such cardiac risk factors. However, the heart rate interval analyses currently utilized are not sufficiently accurate for this purpose. Historically, the risk of sudden death has been evaluated using parameters from stress tests, including cardiorespiratory fitness and recovery heart rate tests. Cardiorespiratory fitness measures an individual's efficiency in transporting oxygen to the muscles and the muscles' ability to use oxygen during exercise. Now, a new computational approach has been developed that can estimate the risk of sudden cardiac death based on a one-minute heart rate measurement taken at rest.
Researchers at Tampere University (Tampere, Finland) have found that the new computational method they developed significantly improves the prediction of long-term sudden death risk. The assessment requires only a minute's worth of heartbeat intervals measured while at rest. This method draws on data from stress tests conducted as part of the Finnish Cardiovascular Study (FINCAVAS) project, which involved approximately 4,000 patients. It utilizes time series analysis to examine the dependencies of heart rate intervals and other complex indicators typical of various heart diseases over different time scales. Patients identified by this new method as having abnormal heart rate variability had a notably higher rate of sudden death compared to those with normal heart rate patterns, even when controlling for other risk factors.
This method holds considerable promise for pre-diagnosis and for identifying patients at high risk. It is independent of other measurements and could easily be integrated into devices such as smartwatches or smart rings. Research and development of this method are being expanded, using extensive databases on different heart conditions, with the goal of not only reliably detecting overall risk but also diagnosing common heart diseases like heart failure, which are currently challenging to identify with existing methods. The initial findings are very encouraging.
“It is possible that in many previously asymptomatic individuals, who have suffered sudden cardiac death or who have been resuscitated after sudden cardiac arrest, the event would have been predictable and preventable if the emergence of risk factors had been detected in time,” said Jussi Hernesniemi, Professor of Cardiology and lead author of the study.
“The most interesting finding of the study is the identification of differences specifically during measurements at rest. The characteristics of heart rate intervals of high-risk patients at rest resemble those of a healthy heart during physical exertion,” added doctoral researcher Teemu Pukkila.
Related Links:
Tampere University
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more