Robotics Combined with AI Improves Safety in Emergency Stroke Surgeries
|
By HospiMedica International staff writers Posted on 20 Jun 2024 |

Cardiovascular diseases remain the leading cause of death throughout Europe, resulting in over 4 million fatalities annually. Mechanical thrombectomies (MT), which involve the surgical removal of blood clots from large blood vessels, have become a standard treatment for patients experiencing such blockages, particularly strokes. The time between the first onset of stroke symptoms to the initiation of treatment is critical; the sooner the clot is removed, the greater the chance that the patient will regain independence after a stroke. Researchers are now focusing on how surgical robots, autonomously guided by artificial intelligence (AI), might improve the safety and efficiency of these procedures.
Researchers at King’s College London (KCL, London, UK) utilized computer modeling to demonstrate that the initial step of the MT procedure, which involves navigating catheters and wires from the groin into the neck vessels, can be performed autonomously using AI navigation. The team adopted inverse reinforcement learning (IRL) to train new AI models. In their studies to assess the viability of IRL for navigation, they compared the effectiveness of single-device tracking (guidewire alone) versus dual-device tracking (catheter and guidewire together), finding both methods highly successful with success rates of 95% and 96%, respectively.
However, the dual-device tracking, which simulates the actions of an expert, showed that integrating IRL with a dense reward function, known as reward shaping, leads to higher overall success rates and reduced procedure times compared to existing methods. The model developed through reward shaping leverages demonstrator data via IRL to navigate towards the target effectively, while the dense reward function encourages quick and efficient progress towards the target, minimizing the number of steps needed.
"Our research uses AI to show, for the first time, how to autonomously navigate medical instruments from the groin to the neck in blood vessels. This is an important part of MT, which removes clots from blood vessels. We also explored various methods to teach the AI,” said King’s PhD student Harry Robertshaw. “We found that using real-life examples to guide the AI, a technique known as 'inverse reinforcement learning', improves its performance compared to the best current methods. Moving forward we can use these new techniques to create models that may be able to navigate unseen patient blood vessels, moving us closer to realizing the full benefits of robotic MT with autonomous assistance.”
“Our work is another step forwards towards improved procedural accessibility and precision of autonomous endovascular navigation tasks,” added Dr. Thomas Booth, Reader in Neuroimaging, School of Biomedical Engineering & Imaging Sciences. “For mechanical thrombectomy, the work plausibly lays the foundation for potentially transformative patient care - for example by treating patients more safely by using AI assistive navigation technologies.”
Related Links:
King’s College London
Latest Surgical Techniques News
- New Study Findings Could Halve Number of Stent Procedures
- Breakthrough Surgical Device Redefines Hip Arthroscopy
- Automated System Enables Real-Time "Molecular Pathology" During Cancer Surgery
- Groundbreaking Procedure Combines New Treatments for Liver Tumors
- Ablation Reduces Stroke Risk Associated with Atrial Fibrillation
- Optical Tracking Method Identifies Target Areas in Robot-Assisted Neurosurgery
- General Anesthesia Improves Post-Surgery Outcomes for Acute Stroke Patients
- Drug-Coated Balloons Can Replace Stents Even in Larger Coronary Arteries
- Magnetic Kidney Stone Retrieval Device Outperforms Ureteroscopic Laser Lithotripsy
- Absorbable Skull Device Could Replace Traditional Metal Implants Used After Brain Surgery
- Magic Silicone Liquid Powered Robots Perform MIS in Narrow Cavities
- 'Lab-on-a-Scalpel' Provides Real-Time Surgical Insights for POC Diagnostics in OR
- Biodegradable Brain Implant Prevents Glioblastoma Recurrence
- Tiny 3D Printer Reconstructs Tissues During Vocal Cord Surgery
- Minimally Invasive Procedure for Aortic Valve Disease Has Similar Outcomes as Surgery
- Safer Hip Implant Design Prevents Early Femoral Fractures
Channels
Critical Care
view channel
Magnetically Guided Microrobots to Enable Targeted Drug Delivery
Stroke affects 12 million people globally each year, often causing death or lasting disability. Current treatment relies on systemic administration of clot-dissolving drugs, which circulate throughout... Read more
Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
Traumatic brain injury (TBI) continues to leave millions with long-term disabilities every year. After a sudden impact from a fall, collision, or accident, the brain undergoes inflammation, oxidative stress,... Read more
Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
Blood loss during or after surgery can place significant stress on people with heart disease, increasing the risk of dangerous complications. Transfusions are often delayed until hemoglobin levels fall... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







