Electronic Finger Wrap Uses Sweat for Automatic Monitoring of Vital Chemical Levels
|
By HospiMedica International staff writers Posted on 04 Sep 2024 |

Advanced wearable health monitoring platforms require sophisticated sensing capabilities and integrated electronics. Nevertheless, existing systems are hampered by issues such as limited energy supply, sensing restrictions, regulatory complexities, and bulkiness. Now, engineers have introduced a sweat-powered wearable device, energized by the sweat from a wearer's fingertip, that makes continuous, personalized health monitoring as easy as wearing a Band-Aid.
Developed by engineers at the University of California San Diego (La Jolla, CA, USA), this innovative electronic finger wrap can monitor vital chemicals like glucose, vitamins, and medications in the sweat it uses for power. The device, which fits snugly around the finger, operates by harnessing energy from the sweat produced by the fingertips—a part of the body with a high concentration of sweat glands, capable of producing sweat 100 to 1000 times more than other body areas, even at rest. This continuous production of sweat, without requiring physical activity or external stimuli, provides a dependable source of energy, allowing the device to function even during inactivity or sleep. The device, highlighted in a paper published Sept. 3 in Nature Electronics, is constructed from several electronic components printed onto a flexible, stretchable polymer, allowing it to conform to the skin and withstand repeated bending, stretching and movement.
At the core of the device's function are biofuel cells placed against the fingertip, designed to efficiently convert sweat's chemical components into electrical energy. This energy is stored in stretchable, silver chloride-zinc batteries that power the device's four sensors, each dedicated to tracking different biomarkers: glucose, vitamin C, lactate, and levodopa, a medication for Parkinson’s disease. Sweat is channeled to these sensors through microfluidic paper paths that also facilitate the biomarker analysis, simultaneously powering the device. Data from the sensors are processed by a small chip, which wirelessly transmits the information to a custom smartphone or laptop app via Bluetooth.
In trials, the device was worn by a subject for monitoring glucose during meals, lactate during desk work and physical activities, vitamin C while consuming orange juice, and levodopa levels after eating fava beans. It offers the flexibility to be tailored for monitoring different health markers based on individual needs. Researchers are now focusing on creating a closed-loop system that not only tracks but also administers treatments based on the biomarker data collected. This could be particularly transformative for conditions like diabetes, where the device could continuously adjust insulin delivery in response to real-time glucose monitoring, and then assess the efficacy of the treatment through ongoing biomarker assessment.
“This is automatic health monitoring at your fingertips,” said study co-first author Shichao Ding, a postdoctoral researcher at the UC San Diego Jacobs School of Engineering. “The wearer can be resting or asleep, and the device can still harvest energy and track biomarker levels.”
Related Links:
UC San Diego
Latest Critical Care News
- Nanogel Technology Almost 100% Effective in Destroying Drug-Resistant Bacteria Within Hours
- Wearable Ultrasound Sensor Delivers Noninvasive Treatment Without Surgery
- Gel-Free ECG System to Transform Heart Health Diagnosis
- Biodegradable Patch Repairs Damaged Tissue After Heart Attack
- Magnetically Guided Microrobots to Enable Targeted Drug Delivery

- Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
- Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
- 'Smart' Shirt Detects Epileptic Seizures in Real Time
- Skin Patch Measures Effectiveness of Flu/COVID Vaccines in 10 Minutes
- Complete Revascularization Reduces Risk of Death from Cardiovascular Causes
- Tiny Fish-Inspired Robots Navigate Through Body to Deliver Targeted Drug Therapy
- Coronary Artery Stenosis Could Protect Patients from Pulmonary Embolism Effects
- Sweat-Powered Sticker Turns Drinking Cup into Health Sensor
- Skin-Mounted 3D Microfluidic Device Analyzes Sweat for Real-Time Health Assessment
- New Therapeutic Brain Implants to Eliminate Need for Surgery
- Stem Cell Patch Gently Heals Damaged Hearts Without Open-Heart Surgery
Channels
Surgical Techniques
view channelNovel Endoscopy Technique Provides Access to Deep Lung Tumors
Detecting lung cancer early can save lives, but diagnosing small tumors deep in the outer regions of the lungs remains a major clinical challenge. Although CT scans frequently identify tiny suspicious... Read more
New Study Findings Could Halve Number of Stent Procedures
When a coronary artery becomes acutely blocked during a heart attack, opening it immediately is essential to prevent irreversible damage. However, many patients also have other narrowed vessels that appear... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







