New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR
By HospiMedica International staff writers Posted on 19 Dec 2024 |

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that are then mounted on glass slides. An optical microscope is then used to examine the tissue in detail. If tumor cells are found on the surface of the tissue sample, it indicates that the surgeon has cut through, rather than around, the tumor, leaving some of the tumor behind, which may require follow-up surgery to remove more tissue. However, frozen section pathology faces issues such as tissue artifacts and reduced staining quality, which can affect diagnostic accuracy and surgical decisions. A new imaging technology now offers a faster and more cost-effective way for surgeons to image tissue samples during surgery to determine whether the entire tumor has been removed or if more tissue needs to be excised.
Bioengineers at the California Institute of Technology (Caltech, Pasadena, CA, USA) have introduced a new imaging technique called parallel ultraviolet photoacoustic microscopy (PUV–PAM), detailed in a study published in Science Advances. This method is based on photoacoustic microscopy (PAM), a technique that excites tissue samples with a low-energy laser, causing the tissue to vibrate. The system detects the ultrasonic waves emitted by the vibrating tissue. Since cell nuclei absorb more light than the surrounding material, PAM can reveal the size and distribution of nuclei and the packing density of cells. Cancerous tissue typically has larger nuclei and more densely packed cells. The research team has previously developed PAM systems for imaging bone and breast tissue, but to make these systems suitable for use in the operating room, they needed to overcome the limitations of the ultraviolet lasers used, which previously restricted the imaging speed.
To address this issue, the researchers divided a single laser beam into eight smaller, parallel laser "spots," allowing the system to cover the tissue sample more quickly. Additionally, PUV-PAM combines two scanning techniques to achieve faster imaging of slide-free tissues. These innovations make the technique approximately 40 times faster than the previous state-of-the-art methods developed by the team. The new PUV–PAM technique can eliminate the need to freeze, section, or stain tissue samples. Even thick samples with irregular surfaces, which are typically too thick for traditional microscopy, can be directly imaged. This method could enable oncologists to analyze biopsy samples during surgery, allowing them to remove additional tissue if necessary, potentially eliminating the need for follow-up surgeries.
"We hope this new imaging system can provide more opportunities for intraoperative pathological examination of slide-free specimens in oncology surgeries. We believe it has the potential to revolutionize intraoperative histology," says Rui Cao, lead author of the new paper. "With the current system, we can image a 1 cm2 sample at 1.3 micron resolution within about five minutes. And we demonstrate in the paper that this technique is effective in a variety of tissue types."
Latest Pathology News
Channels
Critical Care
view channel
Intelligent Wound Dressing Reduces Inflammation and Promotes Healing
Chronic wounds, especially those caused by diabetes or circulatory disorders, are a widespread medical problem that burden healthcare systems. Patients often suffer from open skin lesions that fail to... Read more
Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
Hypertension affects nearly half of all adults in the U.S. and remains the leading cause of cardiovascular disease. Regular and accurate blood pressure monitoring is essential for managing this condition,... Read more
New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
Barrett’s esophagus is a condition in which the lining of the esophagus—normally composed of squamous epithelial cells—undergoes a transformation into cells resembling those found in the stomach or intestine.... Read moreSurgical Techniques
view channel
New Surgical Microscope Offers Precise 3D Imaging Using 48 Tiny Cameras
Surgeons have long relied on stereoscopic microscopes to gain depth perception during delicate procedures, but this method has limitations. While these microscopes provide a sense of three-dimensionality,... Read more
First-Of-Its-Kind Drug Illuminates Nerve Tissue for Faster and Safer Surgery
Surgeons face significant challenges when performing procedures near nerves, as they must work cautiously to avoid causing nerve damage, which can complicate the patient's recovery. Electrophysical monitors... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more