Screw-Shaped Magnetic Microrobots to Transform Treatment for Patients with Inoperable Blood Clots
By HospiMedica International staff writers Posted on 26 Feb 2025 |

Cardiovascular conditions such as thrombosis pose a significant global health issue, with blood clots being responsible for one in four deaths worldwide each year. A blood clot can obstruct a blood vessel, preventing oxygenated blood from reaching certain parts of the body. Traditional treatments often struggle to address clots located in hard-to-reach areas. Now, the development of magnetic microrobots offers new hope for patients dealing with otherwise inoperable blood clots.
Researchers at the University of Twente (Enschede, Netherlandsl) and Radboud University Medical Center (Nijmegen, Netherlands) have successfully developed wireless magnetic robots to remove blood clots. This cutting-edge innovation is poised to revolutionize the treatment of life-threatening vascular conditions such as thrombosis. The robots are 3D-printed in the shape of tiny screws, each containing a small permanent magnet. The magnet, measuring only one millimeter in length and diameter, is strategically positioned to allow the "screw" to rotate in both directions. This capability enables the robot to move against the blood flow and then reverse direction to swim back, making it highly maneuverable. The screw design enhances its ability to effectively drill through blood clots. These microrobots are controlled wirelessly, enabling them to navigate through the complex network of blood vessels.
The study explored three approaches for removing blood clots: mechanical fragmentation, chemical dissolution, and a combination of both. The combined approach proved to be the most reliable and safe, as it both fragments the clots and dissolves the resulting pieces. Using X-ray guidance, the tiny robots can precisely target clots within intricate blood vessels. In a recent study published in Applied Physics Reviews, the researchers demonstrated the potential of these microrobots for precise, minimally invasive clot removal. During their experiments, the robots were able to remove enough of a blood clot in the iliac artery, sourced from sheep, to restore blood flow. The iliac artery was chosen due to its straight and accessible structure, which made it an ideal model for testing. Beyond just breaking up blood clots and restoring blood flow, the technology also shows promise for other applications, such as targeted drug delivery. The robots can deliver medication directly to specific areas in the body, reducing the risk of side effects in unaffected regions.
“These robots are designed to swim and perform surgeries deep inside the body, but researchers have been limited to using clear models and video cameras, or ultrasonic probes with limited range," said Aaron Becker, researcher at the University of Houston. “Real-time X-ray guidance of these tiny robots is an essential leap forward in this area. We’ve long imagined what it looks like, but now we have 3D reconstructions of blood clots as the robot dissolves them.”
Related Links:
University of Twente
Radboud University Medical Center
Latest Surgical Techniques News
- New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
- Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
- Tiny Robotic Tools Powered by Magnetic Fields to Enable Minimally Invasive Brain Surgery
- Magnetic Tweezers Make Robotic Surgery Safer and More Precise
- AI-Powered Surgical Planning Tool Improves Pre-Op Planning
- Novel Sensing System Restores Missing Sense of Touch in Minimally Invasive Surgery
- Headset-Based AR Navigation System Improves EVD Placement
- Higher Electrode Density Improves Epilepsy Surgery by Pinpointing Where Seizures Begin
- Open-Source Tool Optimizes Placement of Visual Brain Implants
- Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
- Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
- Spectroscopy Technique Improves Surgery for Pediatric Epilepsy Patients
- Bioengineered Arteries Show Promise for Cardiovascular Surgery
- Online Tool Guides Surgical Decisions for Gallbladder Cancer
- Innovative Technology Enables Rapid Life-Saving Surgical Leak Detection
- First-Of-Its-Kind Bioresorbable Implant to Help Children with Rare Respiratory Disease
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreCritical Care
view channel
AI Eye Scans Could Help Identify Heart Disease and Stroke Risk
New research has explored the advantages of utilizing artificial intelligence (AI) retinal imaging for screening cardiovascular diseases in general practice (GP) clinics and highlighted areas where improvements... Read more
Digital Heart Twin Improves Diagnosis and Treatment of Cardiac Arrhythmias
Millions of individuals around the globe suffer from cardiac arrhythmias. Traditionally, electrocardiography (ECG) has been used to detect premature ventricular contractions (PVCs), one of the most common... Read more
First-Of-Its-Kind AI-Powered Probability Scoring System Assesses Heart Failure with Preserved Ejection Fraction
Heart failure with preserved ejection fraction (HFpEF) is one of the most difficult types of heart failure to diagnose due to the intricate interaction between various clinical and echocardiographic factors.... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more