High Brain Iron Hastens Alzheimer's Disease
By HospiMedica International staff writers Posted on 14 Jun 2015 |
High ferritin levels in the cerebrospinal fluid (CSF) could increase the risk of developing Alzheimer's disease (AD) and accelerate the cognitive decline that comes with it, according to a new study.
Researchers at the University of Melbourne (Australia), Cornell University (Ithaca, NY, USA), and other partners of the Alzheimer’s Disease Neuroimaging Initiative (ADNI; La Jolla, CA, USA) conducted a study to examine the possible link between brain iron levels and cognitive decline in three groups over seven years. Participants included 91 people with normal cognition, 144 people with mild cognitive impairment, and 67 people with diagnosed AD.
The researchers first determined participants’ brain iron levels by measuring the amount of ferritin in the CSF, which surrounds the brain. They continued to perform regular tests and magnetic resonance imaging (MRI) scans to track cognitive decline and changes in the brain over the study period. The results showed that people with higher levels of ferritin (in all groups) suffered faster declines in cognitive abilities, and accelerated shrinking of the hippocampus. Levels of ferritin were also a linked to a greater likelihood of people with mild cognitive impairment developing AD.
The researchers also found that higher levels of ferritin corresponded to earlier ages for diagnoses of AD, roughly three months for every 1 nanogram per milliliter increase. Another finding was that the ferritin was strongly associated with CSF apolipoprotein E (APOE-e4) levels, and that those participants with the AD risk allele, APOE-ɛ4, a gene variant which is known to be the strongest genetic risk factor for the disease, had the highest levels of iron in their brains. The study was published on May 19, 2015, in Nature Communications.
“We think that iron is contributing to the disease progression of Alzheimer's disease; this is strong evidence to base a clinical trial on lowering iron content in the brain to see if that would impart a cognitive benefit,” said lead author neuroscientist Scott Ayton, PhD, of the University of Melbourne. “Lowering CSF ferritin, as might be expected from a drug like deferiprone, could conceivably delay mild cognitive impairment conversion to Alzheimer's disease by as much as three years. Perhaps it's time to refocus the field on looking at iron as a target.”
AD, named after Dr. Alois Alzheimer, who first described it, is a physical disease that is the result of protein buildup in the brain, forming structures called plaques and tangles. These lead to the loss of connections between nerve cells, and eventually to their death and loss of brain tissue. As AD progresses, memory loss, communication, reasoning, and orientation become increasingly severe, and sufferers need more and more day-to-day support from those who care for them. AD affects almost 50% of those over the age of 85, and is the sixth leading cause of death in the US.
Related Links:
University of Melbourne
Cornell University
Researchers at the University of Melbourne (Australia), Cornell University (Ithaca, NY, USA), and other partners of the Alzheimer’s Disease Neuroimaging Initiative (ADNI; La Jolla, CA, USA) conducted a study to examine the possible link between brain iron levels and cognitive decline in three groups over seven years. Participants included 91 people with normal cognition, 144 people with mild cognitive impairment, and 67 people with diagnosed AD.
The researchers first determined participants’ brain iron levels by measuring the amount of ferritin in the CSF, which surrounds the brain. They continued to perform regular tests and magnetic resonance imaging (MRI) scans to track cognitive decline and changes in the brain over the study period. The results showed that people with higher levels of ferritin (in all groups) suffered faster declines in cognitive abilities, and accelerated shrinking of the hippocampus. Levels of ferritin were also a linked to a greater likelihood of people with mild cognitive impairment developing AD.
The researchers also found that higher levels of ferritin corresponded to earlier ages for diagnoses of AD, roughly three months for every 1 nanogram per milliliter increase. Another finding was that the ferritin was strongly associated with CSF apolipoprotein E (APOE-e4) levels, and that those participants with the AD risk allele, APOE-ɛ4, a gene variant which is known to be the strongest genetic risk factor for the disease, had the highest levels of iron in their brains. The study was published on May 19, 2015, in Nature Communications.
“We think that iron is contributing to the disease progression of Alzheimer's disease; this is strong evidence to base a clinical trial on lowering iron content in the brain to see if that would impart a cognitive benefit,” said lead author neuroscientist Scott Ayton, PhD, of the University of Melbourne. “Lowering CSF ferritin, as might be expected from a drug like deferiprone, could conceivably delay mild cognitive impairment conversion to Alzheimer's disease by as much as three years. Perhaps it's time to refocus the field on looking at iron as a target.”
AD, named after Dr. Alois Alzheimer, who first described it, is a physical disease that is the result of protein buildup in the brain, forming structures called plaques and tangles. These lead to the loss of connections between nerve cells, and eventually to their death and loss of brain tissue. As AD progresses, memory loss, communication, reasoning, and orientation become increasingly severe, and sufferers need more and more day-to-day support from those who care for them. AD affects almost 50% of those over the age of 85, and is the sixth leading cause of death in the US.
Related Links:
University of Melbourne
Cornell University
Latest Critical Care News
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
- Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment
- Self-Healing Skin-Like Material to Find Applications in Health Monitoring, Surgery and Implants
- Highly-Sensitive Electronic Skin Allows Robots to Feel Heat, Pain and Pressure
- AI-Powered Wearable Sensor Predicts Labor Onset in Pregnant Women
Channels
Surgical Techniques
view channel
Neuroform Atlas Stent-Assisted Coiling Found Effective Even in Smaller Arteries
Aneurysms, especially when located in the brain, can be life-threatening if not treated effectively. Intracranial aneurysms, caused by the dilation of blood vessels due to weaknesses in the vessel wall,... Read more
New Surgical Technique Safely Removes Giant Nerve Tumors
Giant plexiform neurofibromas (PNF) are benign tumors commonly associated with neurofibromatosis Type 1 (NF1), a genetic disorder affecting approximately 1 in 3,000 live births. These tumors, which occur... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more