We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Resorbable Scaffold Promotes Spinal Cord Injury Healing

By HospiMedica International staff writers
Posted on 15 May 2018
A novel bioresorbable polymer scaffold placed within a spinal cord injury (SCI) site provides structural support to the spared spinal tissue, and a supportive matrix to facilitate endogenous repair processes.

The InVivo Therapeutics (Cambridge, MA, USA) Neuro-Spinal scaffold is a highly porous device designed to mitigate tissue damage resulting from some of the critical patho-physiological events that occur during the acute phase of SCI, including increase in tissue pressure, hemorrhage, and edema. The scaffold is composed of two biocompatible, bioresorbable polymers, Polylactic-co-glycolic acid (PLGA) and Poly-L-Lysine (PLL), a positively charged polymer conducive to cellular attachment and neurite outgrowth.

Image: The Neuro-Spinal scaffold (Photo courtesy of InVivo Therapeutics).
Image: The Neuro-Spinal scaffold (Photo courtesy of InVivo Therapeutics).

The scaffold is trimmed and fitted in the epicenter of the SCI, where it modulates the healing process by providing biocompatible and cellular-adhesive appositional healing, similar to the function of sutures or a butterfly bandage in a skin laceration. It then degrades over several weeks. A study that examined the objective performance of the scaffold in 19 SCI patients showed conversion from complete paraplegia to incomplete injury within six months in 44% of the patients, exceeding the 25% conversion criterion. The study was presented at the American Association of Neurological Surgeons (AANS) annual meeting, held during May 2018 in New Orleans (LA, USA).

“At the time of stabilization surgery, a decompression laminectomy was done at the site of injury and the maximal damage was determined by ultrasonography,” said study presenter Stuart Lee, MD, of Vidant Health (Greenville, NC, USA). “Surgeons exposed the contusion through durotomy/myelotomy, used gentle irrigation to remove the necrotic tissue, and exposed the intramedullary cavity. As a side note, this gave us an opportunity to look at the pathology of acute SCI in humans, something that is generally only possible at autopsy.”

Large, multinational natural history databases consistently indicate that only 12-16% of subjects with complete thoracic injury will convert to an improved American Spinal Injury Association Impairment Scale (AIS) grade by six months after injury.

Related Links:
InVivo Therapeutics


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Computerized Spirometer
DatospirAira

Latest Surgical Techniques News

Computational Models Predict Heart Valve Leakage in Children

Breakthrough Device Enables Clear and Real-Time Visual Guidance for Effective Cardiovascular Interventions

World’s First Microscopic Probe to Revolutionize Early Cancer Diagnosis