We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Biologic-Based Materials Aid Reconstructive Surgery

By HospiMedica International staff writers
Posted on 29 Apr 2019
Novel reconstructive materials support soft tissues in plastic and reconstructive surgery patients requiring repair or reinforcement.

The TELA Bio (Malvern, PA, USA) Restella reconstructive bioscaffolds are based on a polymer interwoven through layers of biologic tissue in a patented "lockstitch" pattern, which creates a unique embroidered construction with controlled stretch that is highly permeable. The bioscaffolds can support a variety of surgical techniques and procedures, with an emphasis on ventral hernia repair and abdominal wall reconstruction. Restella is available in a range of sizes--up to 25×40 cm (1,000 cm2)--thicknesses, and degrees of reinforcement, and can be trimmed to size.

Image: The Restella reconstructive bioscaffold (Photo courtesy of TELA Bio).
Image: The Restella reconstructive bioscaffold (Photo courtesy of TELA Bio).

The sterile polymer is embedded in a biologic extracellular matrix (ECM) derived from ovine (sheep) rumen, which has been optimized in order to reduce foreign body response, minimize inflammation, and enable functional tissue remodeling through hundreds of pores that allow fluid transfer through the scaffold, with no evidence remaining of interlayer seroma after a short period of just four weeks. The interwoven polymer also helps provide tissue support, along with improved handling and load-sharing capability.

“Our success in applying the advantages of our technology platform to develop Restella reconstructive bioscaffolds is another example of TELA Bio's unique ability to bring innovation and cost savings to address a wide range of needs in surgery,” said Antony Koblish, president and CEO of TELA Bio. “These products were purposefully engineered to allow for rapid tissue integration and revascularization and biomechanical control.”

Ruminant animals such as sheep, cattle, goats, deer, and llamas have a four-chambered stomach, which include the reticulum, rumen, omasum, and abomasum. Structures in each chamber are unique, with the reticulum sporting a honeycomb pattern, the rumen characterized with thousands of papillae that increase surface area, and the omasum and abomasum with numerous folds of tissue. The rumen itself serves as a large fermentation vat in which microorganisms break down feed the animal cannot. As part of this process, they produce by-products, such as volatile fatty acids (VFAs), which the animal absorbs and uses as energy.

Related Links:
TELA Bio


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Monitor Cart
Tryten S5

Latest Surgical Techniques News

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy