Patent Issued on New Antibiotic Technology
By HospiMedica staff writers Posted on 08 Feb 2001 |
A U.S. patent has issued that covers new technology for killing antibiotic-resistant bacteria by using the pathogen's own resistance enzyme. Called Enzyme Catalyzed Therapeutic Activation (ECTA), the new technology is being applied to drug resistance in infectious diseases, especially hospital-acquired infections.
ECTA exploits the resistance enzyme by mimicking the biologic molecule, or so-called substrate, with which the enzyme normally reacts. The ECTA drug carries a potent toxin hidden within its chemical structure through the walls of the unsuspecting diseased cell. Once inside the cell, the resistance enzyme catalyzes the release and activation of the toxin, causing the cell to self-destruct. Diseased cells are more susceptible to the drug and its payload because they have higher concentrations of the resistance enzyme.
The developer of the technology, NewBiotics Inc. (San Diego, CA, USA), is designing ECTA drugs to overcome antibiotic resistance in bacteria that results when the resistance enzyme beta-lactamase is overproduced in response to penicillin and cephalosporin antibiotics. The company's antibiotic candidate, NB2001, is a new class of cephalosporin that provides a two-pronged attack against drug-resistant and nonresistant bacteria.
Against nonresistant bacteria, NB2001 acts like a typical antibiotic to block bacterial cell-wall synthesis. When NB2001 enters the cell wall of an antibiotic-resistant bacterium containing beta-lactamase, the resistance enzyme recognizes the drug as its normal substrate. Upon reacting with the drug, however, the enzyme inadvertently triggers the release and activation of the bactericide triclosan concealed within NB2001, causing the bacterium to self-destruct.
In laboratory tests, NB2001 was shown to be 30 times more effective than penicillin in nonresistant bacteria and 1,000 times more toxic to resistant bacteria than to nonresistant bacteria. The drug has also exhibited good activity, similar to that of vancomycin, against Staphylococcus aureus. NewBiotics is also using its ECTA technology to develop anticancer drugs.
"Drug-resistant bacterial infections, particularly nosocomial infections, continue to be a major problem throughout the world,” said H. Michael Shepard, president and chief scientific officer of NewBiotics. "We're applying our understanding of enzyme production in antibiotic-resistant bacteria to transform drug resistance into therapeutic advantage.”
Related Links:
NewBiotics
ECTA exploits the resistance enzyme by mimicking the biologic molecule, or so-called substrate, with which the enzyme normally reacts. The ECTA drug carries a potent toxin hidden within its chemical structure through the walls of the unsuspecting diseased cell. Once inside the cell, the resistance enzyme catalyzes the release and activation of the toxin, causing the cell to self-destruct. Diseased cells are more susceptible to the drug and its payload because they have higher concentrations of the resistance enzyme.
The developer of the technology, NewBiotics Inc. (San Diego, CA, USA), is designing ECTA drugs to overcome antibiotic resistance in bacteria that results when the resistance enzyme beta-lactamase is overproduced in response to penicillin and cephalosporin antibiotics. The company's antibiotic candidate, NB2001, is a new class of cephalosporin that provides a two-pronged attack against drug-resistant and nonresistant bacteria.
Against nonresistant bacteria, NB2001 acts like a typical antibiotic to block bacterial cell-wall synthesis. When NB2001 enters the cell wall of an antibiotic-resistant bacterium containing beta-lactamase, the resistance enzyme recognizes the drug as its normal substrate. Upon reacting with the drug, however, the enzyme inadvertently triggers the release and activation of the bactericide triclosan concealed within NB2001, causing the bacterium to self-destruct.
In laboratory tests, NB2001 was shown to be 30 times more effective than penicillin in nonresistant bacteria and 1,000 times more toxic to resistant bacteria than to nonresistant bacteria. The drug has also exhibited good activity, similar to that of vancomycin, against Staphylococcus aureus. NewBiotics is also using its ECTA technology to develop anticancer drugs.
"Drug-resistant bacterial infections, particularly nosocomial infections, continue to be a major problem throughout the world,” said H. Michael Shepard, president and chief scientific officer of NewBiotics. "We're applying our understanding of enzyme production in antibiotic-resistant bacteria to transform drug resistance into therapeutic advantage.”
Related Links:
NewBiotics
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more