One-Way Valve Procedure Alleviates Emphysema Patients
By HospiMedica International staff writers Posted on 16 Jun 2015 |

Image: The Zephyr endobronchial valve (Photo courtesy of UAB).
A novel one-way valve blocks airflow to diseased regions of the lung, allowing healthy regions to expand and function more efficiently.
The Zephyr endobronchial valve (EBV) prevents airflow from entering into the diseased region while allowing trapped air and fluids to escape, thus achieving lung volume reduction. The unidirectional valves—either 4 mm or 5.5 mm in size—are implanted in a minimally invasive procedure using a bronchoscope equipped with a video camera. During the 60-minute procedure, 3–5 Zephyr valves are placed in the problematic airways of the lung. Once deployed, the self-expanding valve conforms to the bronchial wall and forms an air-tight seal, blocking airflow to the diseased regions.
A proprietary diagnostic device, the Chartis system, is utilized prior to the procedure to identify likely responders by measuring precise flow and pressure readings for specific lobes in the lungs to assess collateral ventilation. The system is based on a balloon catheter inserted through a bronchoscope to the target airway, which is inflated to block flow to the target region. The system then calculates airway resistance and measures closing volume (CV) in isolated lobes in the lung. A console displays expiratory air flow, pressure, and resistance measurements. The Zephyr EBV and Chartis system are products of PulmonX (Redwood City, CA, USA).
“The idea behind all lung-volume-reduction procedures is to allow the diaphragm to return to its normal shape and function. We're looking for a less invasive way to achieve that goal without the risks inherent in surgery,” said Associate Professor Mark Dransfield, MD, medical director of Lung Health Center at the University of Alabama at Birmingham (UAB; USA). “Patients need to have enough healthy lung tissue so that the blockage of the most diseased and damaged areas, and the reduced lung volume, will allow the healthier areas to function more normally.”
Advanced emphysema is a chronic, debilitating disease that causes irreversible damage to delicate lung tissue. It is characterized by reduced lung function, increased lung volume, and loss of the lung's natural elastic properties which makes breathing difficult. As the disease progresses and lung tissue is destroyed, excess air is trapped in the lungs, making it difficult for the person to exhale. This hyperinflation is responsible for feeling “short of breath,” manifested by continuous fatigue, chronic coughing, wheezing, and frequent respiratory infections.
Related Links:
PulmonX
University of Alabama at Birmingham
The Zephyr endobronchial valve (EBV) prevents airflow from entering into the diseased region while allowing trapped air and fluids to escape, thus achieving lung volume reduction. The unidirectional valves—either 4 mm or 5.5 mm in size—are implanted in a minimally invasive procedure using a bronchoscope equipped with a video camera. During the 60-minute procedure, 3–5 Zephyr valves are placed in the problematic airways of the lung. Once deployed, the self-expanding valve conforms to the bronchial wall and forms an air-tight seal, blocking airflow to the diseased regions.
A proprietary diagnostic device, the Chartis system, is utilized prior to the procedure to identify likely responders by measuring precise flow and pressure readings for specific lobes in the lungs to assess collateral ventilation. The system is based on a balloon catheter inserted through a bronchoscope to the target airway, which is inflated to block flow to the target region. The system then calculates airway resistance and measures closing volume (CV) in isolated lobes in the lung. A console displays expiratory air flow, pressure, and resistance measurements. The Zephyr EBV and Chartis system are products of PulmonX (Redwood City, CA, USA).
“The idea behind all lung-volume-reduction procedures is to allow the diaphragm to return to its normal shape and function. We're looking for a less invasive way to achieve that goal without the risks inherent in surgery,” said Associate Professor Mark Dransfield, MD, medical director of Lung Health Center at the University of Alabama at Birmingham (UAB; USA). “Patients need to have enough healthy lung tissue so that the blockage of the most diseased and damaged areas, and the reduced lung volume, will allow the healthier areas to function more normally.”
Advanced emphysema is a chronic, debilitating disease that causes irreversible damage to delicate lung tissue. It is characterized by reduced lung function, increased lung volume, and loss of the lung's natural elastic properties which makes breathing difficult. As the disease progresses and lung tissue is destroyed, excess air is trapped in the lungs, making it difficult for the person to exhale. This hyperinflation is responsible for feeling “short of breath,” manifested by continuous fatigue, chronic coughing, wheezing, and frequent respiratory infections.
Related Links:
PulmonX
University of Alabama at Birmingham
Latest Critical Care News
- Smart Bandage Monitors Chronic Wounds in Human Patients
- AI Identifies Patients with Increased Lung Cancer Risk Up To 4 Months Earlier
- Next Gen Hemodynamic Monitoring Solution Provides AI-Driven Clinical Decision Support
- AI Algorithm Identifies High-Risk Heart Patients
- Wearable Glucose Monitor Offers Less Invasive Approach to Assessing Diabetes Risk
- Wireless, Self-Powered Smart Insole to Improve Personal Health Monitoring
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
Channels
Surgical Techniques
view channel
DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment
One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more